Skip to main content
Log in

Kinetics of fast-curing epoxy resin cationic thermopolymerization: Propagated by ACE and AM mechanism

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The kinetics of fast thermal curing epoxy resin and the fast-curing ability initiated by 4- hydroxyphenyl dialkyl sulfonium salt cationic curing agent were discussed. The curing reaction is driven by two chain propagation mechanisms. At the initial stage of the polymerization, the propagation is dominated by activated chain end (ACE) mechanism with a faster curing rate. At long time of the polymerization, the propagation is dominated by activated monomer (AM) mechanism with a lower curing rate. With the increase of curing agent content, the activation energy of ACE mechanism reduces, however, the activation energy of AM mechanism decreases first and then increases. In addition, the surface curing test was used to evaluate the fast-curing ability of this epoxy system. By adopting preferred formulation and process, this epoxy system could be cured in several seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahmadi Z. Nanostructured epoxy adhesives: a review. Prog Org Coat. 2019;135:449–53.

    Article  CAS  Google Scholar 

  2. Kowalczyk K, Spychaj T. Epoxy coatings with modified montmorillonites. Prog Org Coat. 2008;62(4):425–9.

    Article  CAS  Google Scholar 

  3. Liu S, Gu L, Zhao HC, Chen JM, Yu HB. Corrosion resistance of graphene-reinforced waterborne epoxy coatings. J Mater Sci Technol. 2016;32(5):425–31.

    Article  CAS  Google Scholar 

  4. Rimdusit S, Ishida H. Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins. Polymer. 2000;41(22):7941–9.

    Article  CAS  Google Scholar 

  5. Ham YR, Kim SH, Shin YJ, Lee DH, Yang M, Min JH, et al. A comparison of some imidazoles in the curing of epoxy resin. J Ind Eng Chem. 2010;16(4):556–9.

    Article  CAS  Google Scholar 

  6. Xu YJ, Wang J, Tan Y, Qi M, Chen L, Wang YZ. A novel and feasible approach for one-pack flame-retardant epoxy resin with long pot life and fast curing. Chem Eng J. 2018;337:30–9.

    Article  CAS  Google Scholar 

  7. Zhang BL, Tang GL, Shi KY, You YC, Du ZJ, Yang JF, et al. A study on properties of epoxy resin toughened by functionalized polymer containing rigid, rod-like moiety. Eur Polym J. 2000;36(1):205–13.

    Article  CAS  Google Scholar 

  8. Ham YR, Lee DH, Kim SH, Shin YJ, Yang M, Shin JS. Microencapsulation of imidazole curing agent for epoxy resin. J Ind Eng Chem. 2010;16(5):728–33.

    Article  CAS  Google Scholar 

  9. Wang YR, Liu WS, Qiu YP, Wei Y. A one-component, fast-cure, and economical epoxy resin system suitable for liquid molding of automotive composite parts. Materials. 2018;11(5):685.

    Article  Google Scholar 

  10. Sangermano M, Malucelli G, Amerio E, Priola A, Billi E, Rizza G. Photopolymerization of epoxy coatings containing silica nanoparticles. Prog Org Coat. 2005;54(2):134–8.

    Article  CAS  Google Scholar 

  11. Sangermano M, Roppolo I, Chiappone A. New horizons in cationic photopolymerization. Polymers. 2018;10(2):136.

    Article  Google Scholar 

  12. Penczek S. Cationic ring-opening polymerization (CROP) major mechanistic phenomena. J Polym Sci Pol Chem. 2000;38(11):1919–33.

    Article  CAS  Google Scholar 

  13. Penczek S, Kubisa P, Szymański R. Activated monomer propagation in cationic polymerizations. Makromol Chem, Macromol Symp. 1986;3(1):203–20.

    Article  CAS  Google Scholar 

  14. Anderson BJ. Cationic cure kinetics of a polyoxometalate loaded epoxy nanocomposite. J Polym Sci Pol Chem. 2012;50(21):4507–15.

    Article  CAS  Google Scholar 

  15. Gonzalez L, Ramis X, Salla JM, Mantecon A, Serra A. Kinetic analysis by DSC of the cationic curing of mixtures of DGEBA and 6,6-dimethyl (4,8-dioxaspiro [2.5]octane-5,7-dione). Thermochim Acta. 2007;464(1–2):35–41.

    Article  CAS  Google Scholar 

  16. Crivello JV. Cationic polymerization-Iodonium and sulfonium salt photoinitiators. Adv Polym Sci. 1984;62:1–48.

    Article  CAS  Google Scholar 

  17. Wang Y, Wei RB, He YN, Wang XG. Synthesis of hyperbranched azo-polymer-grafted graphene oxide hybrid. Chem Lett. 2012;41(4):430–1.

    Article  CAS  Google Scholar 

  18. Chen Y, Jia XQ, Wang MQ, Wang T. A synergistic effect of a ferrocenium salt on the diaryliodonium salt-induced visible-light curing of bisphenol-a epoxy resin. RSC Adv. 2015;5(42):33171–6.

    Article  CAS  Google Scholar 

  19. Ahn YS, Chen Y, Hahn HT. A resist for electric imprint lithography. Microelectron Eng. 2009;86(3):392–6.

    Article  CAS  Google Scholar 

  20. Crivello JV, Lam JHW. Photoinitiated cationic polymerization with triarylsulfonium salts. J Polym Sci Pol Chem. 1996;34(16):3231–53.

    Article  CAS  Google Scholar 

  21. Crivello JV, Lam JHW. Photoinitiated cationic polymerization by dialkylphenacylsulfonium salts. J Polym Sci Pol Chem Ed. 1979;17(9):2877–92.

    Article  CAS  Google Scholar 

  22. Crivello JV, Lam JHW. Photoinitiated cationic polymerization by dialkyl-4-hydroxyphenylsulfonium salts. J Polym Sci Pol Chem Ed. 1980;18(3):1021–34.

    Article  CAS  Google Scholar 

  23. Boey F, Rath SK, Ng AK, Abadie MJM. Cationic UV cure kinetics for multifunctional epoxies. J Appl Polym Sci. 2002;86(2):518–25.

    Article  CAS  Google Scholar 

  24. Canavate J, Colom X, Pages P, Carrasco F. Study of the curing process of an epoxy resin by FTIR spectroscopy. Polym-Plast Technol. 2000;39(5):937–43.

    Article  CAS  Google Scholar 

  25. Barkoula NM, Karabela M, Zafeiropoulos NE, Tsotra P. Fast curing versus conventional resins–degradation due to hygrothermal and UV exposure. Express Polym Lett. 2020;14(5):401–15.

    Article  CAS  Google Scholar 

  26. Xiao GZ, Delamar M, Shanahan MER. Irreversible interactions between water and DGEBA/DDA epoxy resin during hygrothermal aging. J Appl Polym Sci. 1997;65(3):449–58.

    Article  CAS  Google Scholar 

  27. Olmos D, Aznar AJ, Gonzalez-Benito J. Kinetic study of the epoxy curing at the silica particles/epoxy interface using the fluorescence of pyrene label. Polym Test. 2005;24(3):275–83.

    Article  CAS  Google Scholar 

  28. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  29. Crane LW, Dynes PJ, Kaelble DH. Analysis of curing kinetics in polymer composites. J Polym Sci Pol Lett Ed. 1973;11(8):533–40.

    Article  CAS  Google Scholar 

  30. Salla JM, Fernandez-Francos X, Ramis X, Mas C, Mantecon A, Serra A. Influence of the proportion of ytterbium triflate as initiator on the mechanism of copolymerization of DGEBA epoxy resin and gamma-butyrolactone. J Therm Anal Calorim. 2008;91(2):385–93.

    Article  CAS  Google Scholar 

  31. Perrin FX, Nguyen TMH, Vernet JL. Modeling the cure of an epoxy-amine resin with bisphenol a as an external catalyst. Macromol Chem Phys. 2007;208(1):55–67.

    Article  CAS  Google Scholar 

  32. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  33. Kowalczyk K, Kowalczyk A. Influence of cationic photoinitiator type on properties of coating materials based on cycloaliphatic and glycidyl epoxy resins. Prog Org Coat. 2017;112:1–8.

    Article  CAS  Google Scholar 

  34. Rodriguez-Uicab O, Abot JL, Aviles F. electrical resistance sensing of epoxy curing using an embedded carbon nanotube yarn. Sensors. 2020;20(11):3230.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Ji’an Double Hundred Plan Project.

Author information

Authors and Affiliations

Authors

Contributions

BL: Conceptualization, Methodology, Resources, Investigation, Writing–original draft. JC: Conceptualization, Methodology, Resources. HW: Investigation, Writing–review & editing. HL: Supervision, Conceptualization, Methodology, Writing–review & editing.

Corresponding author

Correspondence to Hengfeng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Chen, J., Wang, H. et al. Kinetics of fast-curing epoxy resin cationic thermopolymerization: Propagated by ACE and AM mechanism. J Therm Anal Calorim 147, 11899–11907 (2022). https://doi.org/10.1007/s10973-022-11381-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11381-w

Keywords

Navigation