Skip to main content
Log in

Thermal stability and degradation of meso-tetraphenylporphyrins bearing nitrogen-containing substituents

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Porphyrins have exquisite photophysical and electronic properties that enable their use in photodynamic therapy. Even though the thermodynamic behavior relates to the aforementioned properties, the thermal degradation of non-mesomorphic porphyrins behavior has been little explored. Here, we demonstrated the thermoanalytical profiles of common porphyrins, using differential scanning calorimetry (DSC) and thermogravimetric analysis (TG/DTG). The thermal behavior was also evaluated from the perspective of molecular modeling and energy minimization. In our series, porphyrins embedding pyridyl, amino-phenyl, and nitro-phenyl moieties, that confer different physicochemical and electronic properties to the macrocycle, were studied. Tetrapyridylporphyrin presents symmetric and parallel lowest unoccupied molecular orbitals (LUMOs) and was the most thermostable compound (DTGpeak = 473.26 °C), while β-nitrotetraphenylporphyrin presents LUMOs drastically shifted toward the electron-withdrawing group –NO2 group and was the least stable upon heating (DTGpeak1 = 357.16 °C). DSC profiles showed phase change/crystalline transitions and endothermic degradation events for phenyl-, aminophenyl- and pyridyl-containing porphyrins, whereas nitro-porphyrins exhibited a high energetic exothermic degradation event (p-nitrophenyl-triphenylporphyrin: Tpeak = 406.84 °C, ∆H = 147.28 J g−1; β-nitro-tetraphenyl-porphyrin Tpeak = 375.25 °C, ∆H = 849.52 J g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adler AD, Longo FR, Finarelli JD, Goldmacher J, Assour J, Korsakoff L. A simplified synthesis for meso-tetraphenylporphine. J Org Chem. 1967. https://doi.org/10.1021/jo01288a053.

    Article  Google Scholar 

  2. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic therapy. J Natl Cancer Inst. 1998. https://doi.org/10.1093/jnci/90.12.889.

    Article  PubMed  Google Scholar 

  3. Carneiro J, Gonçalves AG, Zhou Z, Griffin KE, Kaufman NEM, Vicente MGH. Synthesis and in vitro PDT evaluation of new porphyrins containing meso-epoxymethylaryl cationic groups. Lasers Surg Med. 2018. https://doi.org/10.1002/lsm.22824.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Müller A, Preuß A, Röder B. Photodynamic inactivation of Escherichia coli: Correlation of singlet oxygen kinetics and phototoxicity. J Photochem Photobiol B Biol. 2018. https://doi.org/10.1016/j.jphotobiol.2017.11.017.

    Article  Google Scholar 

  5. Makola LC, Managa M, Nyokong T. Enhancement of photodynamic antimicrobialtherapy through the use of cationic indium porphyrin conjugated to Ag/CuFe2O4 nanoparticles. Photodiagnosis Photodyn Ther. 2020. https://doi.org/10.1016/j.pdpdt.2020.101736.

    Article  PubMed  Google Scholar 

  6. Pandey G, Chaudhari R, Joshi B, Choudhary S, Kaur J. Fluorescent biocompatible platinum-porphyrin: doped polymeric hybrid particles for oxygen and glucose biosensing. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-41326-7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chandra S, Mende C. Fabrication of a porphyrin-based electrochemical biosensor for detection of nitric oxide released by cancer cells. J Solid State Electr. 2015. https://doi.org/10.1007/s10008-014-2583-z.

    Article  Google Scholar 

  8. Aly KI, Sayed MM, Mohamed MG, Kuo SW, Younis O. A facile synthetic route and dual function of network luminescent porous polyester and copolyester containing porphyrin moiety for metal ions sensor and dyes adsorption. Microporous Mesoporous Mater. 2020. https://doi.org/10.1016/j.micromeso.2020.110063.

    Article  Google Scholar 

  9. Imahori H, Kimura M, Hosomizu K, Fukuzumi S. Porphyrin and fullerene-based photovoltaic devices. J Photoch Photobio. 2004. https://doi.org/10.1016/j.jphotochem.2004.04.041.

    Article  Google Scholar 

  10. Graham KR, Yang Y, Sommer JR, Shelton AH, Schanze KS, Xue J, Reynolds JR. Extended conjugation platinum(II) porphyrins for use in near- infrared emitting organic light emitting diodes. Chem Mater. 2011. https://doi.org/10.1021/cm202242x.

    Article  Google Scholar 

  11. Endo BA, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C. Thermally activated delayed fluorescence from Sn+4: porphyrin complexes and their application to organic light-emitting diodes—a novel mechanism for electroluminescence. Adv Mater. 2009. https://doi.org/10.1002/adma.200900983.

    Article  PubMed  Google Scholar 

  12. Wróbel D, Dudkowiak A. Porphyrins and phthalocyanines: functional molecular materials for optoelectronics and medicine. Mol Cryst Liq Cryst. 2007. https://doi.org/10.1080/15421400500377354.

    Article  Google Scholar 

  13. McMillin DR, Shelton AH, Bejune SA, Fanwick PE, Wall RK. Understanding binding interactions of cationic porphyrins with B-form DNA. Coord Chem Rev. 2005. https://doi.org/10.1016/j.ccr.2004.11.016.

    Article  Google Scholar 

  14. Jensen TJ, Vicente MGH, Luguya R, Norton J, Fronczek FR, Smith KM. Effect of overall charge and charge distribution on cellular uptake, distribution and phototoxicity of cationic porphyrins in HEp2 cells. J Photochem Photobiol B Biol. 2010. https://doi.org/10.1016/j.jphotobiol.2010.05.007.

    Article  Google Scholar 

  15. Henriques CA, Nuno G, Abreu AR, Calvete MJF, Pereira MM. Unsymmetrical porphyrins: the role of meso -substituents on their physical properties. J Porphyr Phthalocya. 2012. https://doi.org/10.1142/S1088424612500332.

    Article  Google Scholar 

  16. Zheng W, Shan N, Yu L, Wang X. UV visible, fluorescence and EPR properties of porphyrins and metalloporphyrins. Dye Pigment. 2008. https://doi.org/10.1016/j.dyepig.2007.04.007.

    Article  Google Scholar 

  17. Wu D, Xu G, Qu S, Xue R, Gu C, Zhang F. Standard enthalpies of combustion and formation of porphyrin derivatives. Thermochim Acta. 1989. https://doi.org/10.1016/0040-6031(89)85460-7.

    Article  Google Scholar 

  18. Zhang X, Zhu B, Zhou L, Liu P, Deng W. Synthesis of novel porphyrin derivatives with mesogenic properties. Synth Commun. 2015. https://doi.org/10.1080/00397911.2015.1103873.

    Article  Google Scholar 

  19. Sun E, Sun Z, Yuan M, Wang D, Shi T. The synthesis and properties of meso- tetra (4-alkylamidophenyl) porphyrin liquid crystals and their Zn complexes. Dye Pigment. 2009. https://doi.org/10.1016/j.dyepig.2008.09.016.

    Article  Google Scholar 

  20. Wei X, Du X, Chen D, Chen Z. Thermal analysis study of 5,10,15,20-tetrakis (methoxyphenyl) porphyrins and their nickel complexes. Thermochim Acta. 2006. https://doi.org/10.1016/j.tca.2005.10.017.

    Article  Google Scholar 

  21. Guan C, Chen D, Gao Z, Sun W. Thermal behavior and thermal decomposition study of porphyrin polymers containing different spacer groups. Thermochim Acta. 2004. https://doi.org/10.1016/j.tca.2003.11.002.

    Article  Google Scholar 

  22. Lindsey JS, Schreiman IC, Hsu HC, Kearney PC, Marguerettaz AM. Revisited: synthesis of Tetraphenylporphyrins. J Org Chem. 1987. https://doi.org/10.1021/jo00381a022.

    Article  Google Scholar 

  23. Kruper WJ, Chamberlin TA, Kochanny M. Regiospecific aryl nitration of meso-substituted tetraarylporphyrins: a simple route to bifunctional porphyrins. J Org Chem. 1989. https://doi.org/10.1021/jo00272a057.

    Article  Google Scholar 

  24. Dallagnol JCC, Ducatti DRB, Barreira SMW, Noseda MD, Duarte MER, Gonçalves AG. Synthesis of porphyrin glycoconjugates bearing thiourea, thiocarbamate and carbamate connecting groups: Influence of the linker on chemical and photophysical properties. Dye Pigment. 2014. https://doi.org/10.1016/j.dyepig.2014.03.029.

    Article  Google Scholar 

  25. Ostrowski S, Szerszeń D, Ryszczuk M. Electrophilic nitration of meso-tetraarylporphyrin complexes at the β-pyrrolic position. Synthesis. 2005. https://doi.org/10.1055/s-2005-861853.

    Article  Google Scholar 

  26. Vandresen CC, Gonçalves AG, Ducatti DRB, Murakami FS, Noseda MD, Duarte MER, Barreira SMW. In vitro photodynamic inactivation of conidia of the phytopathogenic fungus colletotrichum graminicola with cationic porphyrins. Photochem Photobiol Sci. 2016;15:673–81. https://doi.org/10.1039/c5pp00372e.

    Article  CAS  PubMed  Google Scholar 

  27. Slomp AM, Barreira SMW, Carrenho LZB, Vandresen CC, Zattoni IF, Ló SMS, Dallagnol JCC, Ducatti DRB, Orsato A, Duarte MER, Noseda MD, Otuki MF, Gonçalves AG. Photodynamic effect of meso-(aryl)porphyrins and meso-(1-methyl-4-pyridinium)porphyrins on HaCaT keratinocytes. Bioorg Med Chem Lett. 2017. https://doi.org/10.1016/j.bmcl.2016.11.094.

    Article  PubMed  Google Scholar 

  28. Delgado-Lima A, Borges JP, Ferreira IM, Machado AV. Fluorescent and conductive cellulose acetate-based membranes with porphyrins. Mater Today Commun. 2017. https://doi.org/10.1016/j.mtcomm.2017.02.004.

    Article  Google Scholar 

  29. Castro MCR, Sá A, Fonseca AM, Raposo MMM, Machado AV. Development of iridium porphyrin arrays by axial coordination through N-bidentate ligand: synthesis and evaluation of the optical, electrochemical and thermal properties. Polyhedron. 2018. https://doi.org/10.1016/j.poly.2018.07.035.

    Article  Google Scholar 

  30. Karousis N, Sandanayaka ASD, Hasobe T, Economopoulos SP, Sarantopoulou E, Tagmatarchis N. Graphene oxide with covalently linked porphyrin antennae: synthesis, characterization and photophysical properties. J Mater Chem. 2011. https://doi.org/10.1039/c0jm00991a.

    Article  Google Scholar 

  31. Prabhavathi G, Arjun M, Yamuna R. Synthesis, characterization and photoluminescence properties of tetra(aminophenyl) porphyrin covalently linked to multi-walled carbon nanotubes. J Chem Sci. 2017. https://doi.org/10.1007/s12039-017-1295-1.

    Article  Google Scholar 

  32. Giro-Paloma J, Barreneche C. Comparison of phase change slurries: physicochemical and thermal properties. Energy. 2015. https://doi.org/10.1016/j.energy.2015.04.071.

    Article  Google Scholar 

  33. Liao P, Wang X, Gao Y, Zhang X, Zhang L, Song C, Zhang D, Yan Y, Chen Z. Synthesis, photophysical properties and biological evaluation of β-alkylaminoporphyrin for photodynamic therapy. Bioorg Med Chem. 2016. https://doi.org/10.1016/j.bmc.2016.09.060.

    Article  PubMed  Google Scholar 

  34. Nowak-Król A, Gryko DT. Low-melting porphyrins and their photophysical properties. Funct Org Liq. 2019. https://doi.org/10.1002/9783527804948.ch2.

    Article  Google Scholar 

  35. Wang Q, Wang J, Larranaga MD. Simple relationship for predicting onset temperatures of nitro compounds in thermal explosions. J Therm Anal Calorim. 2013. https://doi.org/10.1007/s10973-012-2377-4.

    Article  Google Scholar 

  36. Korolev VL, Pivina TS, Porollo AA, Petukhova TV, Sheremetev AB, Ivshin VP. Differentiation of the molecular structures of nitro compounds as the basis for simulation of their thermal destruction processes. Russ Chem Rev. 2009. https://doi.org/10.1070/RC2009v078n10ABEH004055.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed in part by CNPq and CAPES (Finance Code 001). AV acknowledges a doctoral scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). JC and JCCD acknowledge a postdoctoral scholarship from CAPES. Duarte, M.E.R. and Noseda, M.D. are Research Members of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by JC, JCCD, and AV. The first draft of the manuscript was written by JC and JCCD, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jaqueline Carneiro.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest and ensure data transparency.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 331 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carneiro, J., Dallagnol, J.C.C., Veiga, A. et al. Thermal stability and degradation of meso-tetraphenylporphyrins bearing nitrogen-containing substituents. J Therm Anal Calorim 147, 6755–6764 (2022). https://doi.org/10.1007/s10973-021-10992-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10992-z

Keywords

Navigation