Skip to main content
Log in

Measurements of isobaric LLV equilibria of the 1,1,4,4-tetramethyl-2-tetrazene-water binary system: novel experimental approach and modeling essays

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study was carried out in the frame of the optimization of the synthesis process of 1,1,4,4-tetramethyl-2-tetrazene (TMTZ), a prospective liquid propellant. The liquid–liquid (LL) equilibria of the TMTZ + H2O binary system were studied under atmospheric pressure and in the temperature range from 278.15 up to 348.15 K. These results established the conditions leading to a spontaneous demixing of TMTZ from the aqueous synthesis solutions. The experimental study of the liquid–vapor (LV) equilibria of the TMTZ + H2O system using DSC, under atmospheric pressure, highlighted the various equilibrium domains involved in the distillation step. Besides, a heteroazeotropic invariant was identified at TH = 366.3 K for x (TMTZ) = 0.254. Lastly, the thermodynamic modeling of those equilibria, using various models (Van Laar, NRTL, Wilson), enabled to improve the experimental results in order to enhance the extraction conditions leading to the production of ultra-pure TMTZ.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Catoire L, Chaumeix N, Pichon S, Paillard C. Visualizations of gas-phase NTO/MMH reactivity. J Propul Power. 2006;22(1):120–6.

    Article  Google Scholar 

  2. Frank I, Hammerl A, Klapoetke TM, Nonnenberg C, Zewen H. Processes during the hypergolic ignition between monomethylhydrazine (MMH) and dinitrogen tetroxide (N2O4) in rocket engines. Prop Explos Pyrotech. 2005;30:44–52.

    Article  CAS  Google Scholar 

  3. Nonnenberg C, Frank I, Klapoetke TM. Ultrafast cold reactions in the bipropellant monomethylhydrazine/nitrogen tetroxide: CPMD simulations. Angew Chem. 2004;43(35):4585–9.

    Article  Google Scholar 

  4. Osmont A, Catoire L, Klapotke TM, Vaghjiani GL, Swihart MT. Thermochemistry of species potentially formed during NTO/MMH hypergolic ignition. Prop Explos Pyrotech. 2008;33:209–12.

    Article  CAS  Google Scholar 

  5. Sutton GP. History of liquid propellant rocket engines in the united states. J Propul Power. 2003;19(6):978–1007.

    Article  Google Scholar 

  6. Schmidt EW. Hydrazine and its derivatives: preparation, properties, applications. New York: John Wiley and Sons; 1984.

    Google Scholar 

  7. Carlsen L, Kenesova OA, Batyrbekova SE. A preliminary assessment of the potential environmental and human health impact of unsymmetrical dimethylhydrazine as a result of space activities. Chemosphere. 2007;67:1108–16.

    Article  CAS  Google Scholar 

  8. Carlsen L, Kenessov BN, Batyrbekova SY, Kolumbaeva SZ, Shalakhmetova TM. Assessment of the mutagenic effect of 1,1-dimethyl hydrazine. Environ Toxicol Pharmacol. 2009;28:448–52.

    Article  CAS  Google Scholar 

  9. Choudhary G, Hansen H. Human health perspective on environmental exposure to hydrazines: a review. Chemosphere. 1998;37(5):801–43.

    Article  CAS  Google Scholar 

  10. Reddy G, Song J, Mecchi MS, Johnson MS. Genotoxicity assessment of two hypergolic energetic propellant compounds. Mutat Res Genet Toxicol Environ Mutagen. 2010;700(1–2):26–31.

    Article  CAS  Google Scholar 

  11. Dhenain A, Darwich C, Sabate CM, Le DM, Bougrine AJ, Delalu H, Lacôte E, Payen L, Guitton J, Labarthe E, Jacob G. (E)-1,1,4,4-Tetramethyl-2-tetrazene (TMTZ): a prospective alternative to hydrazines in rocket propulsion. Chem Eur J. 2017;23(41):9897–907.

    Article  CAS  Google Scholar 

  12. Sabate CM, Delalu H, Guelou Y, Dhenain A, Perut C. Process for preparing alkyltetrazenes. FR2974087A1; 2012.

  13. Mokdad S, Georgin E, Mokbel I, Jose J, Hermier Y, Himbert M. On the way to determination of the vapor-pressure curve of pure water. Int J Thermophys. 2012;33(8–9):1374–89.

    Article  CAS  Google Scholar 

  14. Kemme HR, Kreps SI. Vapor pressure determination by differential thermal analysis. Anal Chem. 1969;41(13):1869–72.

    Article  CAS  Google Scholar 

  15. Vassallo DA, Harden JC. Precise phase transition measurements of organic materials by differential thermal analysis. Anal Chem. 1962;34(1):132–5.

    Article  CAS  Google Scholar 

  16. Akisawa Silva LY, Matricarde Falleiro RM, Meirelles AJA, Kraehenbuehl MA. Vapor-liquid equilibrium of fatty acid ethyl esters determined using DSC. Thermochim Acta. 2011;512(1–2):178–82.

    Article  CAS  Google Scholar 

  17. Liu ZR, Shao YH. Measurement of the eutectic composition and temperature of energetic materials. Part 1. The phase-diagram of binary systems. Thermochim Acta. 1995;250(1):65–76.

    Article  CAS  Google Scholar 

  18. Wong DSH, Sandler SI. A theoretically correct mixing rule for cubic equations of state. AICHE J. 1992;38(5):671–80.

    Article  CAS  Google Scholar 

  19. Stull DR. Vapor pressure of pure substances—organic compounds. Ind Eng Chem. 1947;39(4):517–40.

    Article  CAS  Google Scholar 

  20. Gmehling J. Data bases of the Dortmund Data Bank, UNIFAC Consortium, http://www.ddbst.com/published-parameters-unifac.html#ListOfSubGroupsAndTheirGroupSurfacesAnVolumes.

  21. Van Laar JJ. Die Schmelz- oder Erstarrungskurven bei binären Systemen, wenn die feste Phase ein Gemisch (amorphe feste Lösung oder Mischkristalle) der beiden Komponenten ist. Z Phys Chem. 1908;63:216–53.

    Article  Google Scholar 

  22. Wilson GM. Vapor-liquid equilibrium: a new expression for the excess free energy of mixing. J Am Chem Soc. 1964;86(2):127–30.

    Article  CAS  Google Scholar 

  23. Renon H, Prausnitz JM. Local composition in thermodynamic excess functions for liquid mixtures. AIChE J. 1968;14(1):135–44.

    Article  CAS  Google Scholar 

  24. Renon H, Prausnitz J. Estimation of parameters for NRTL equation for excess Gibbs energies of strongly nonideal liquid mixtures. Ind Eng Chem Process Des Dev. 1969;8(3):413–9.

    Article  CAS  Google Scholar 

  25. Bondi A. Van der Waals volumes and radii. J Phys Chem. 1964;68(3):441–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Université Claude Bernard Lyon 1, CNRS, CNES and ArianeGroup, which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaza Darwich.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bougrine, AJ., Renault, A., Frangieh, MR. et al. Measurements of isobaric LLV equilibria of the 1,1,4,4-tetramethyl-2-tetrazene-water binary system: novel experimental approach and modeling essays. J Therm Anal Calorim 147, 6869–6881 (2022). https://doi.org/10.1007/s10973-021-10987-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10987-w

Keywords

Navigation