Skip to main content
Log in

On the Way to Determination of the Vapor-Pressure Curve of Pure Water

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The determination of the physical properties of pure water, especially the vapor-pressure curve of water, is one of the major issues identified by the Consultative Committee for Thermometry of the International Committee for Weights and Measures (CIPM) to improve the accuracy of the national references in humidity. At the present time the saturation-pressure data, corresponding to ice or liquid–vapor equilibrium, at low temperature are scarce and unreliable. This study presents new measurements of vapor and sublimation pressures of, respectively, water and ice, using a static apparatus. Prior to saturation-pressure measurements, the temperature and pressure sensors of the static apparatus were calibrated against reference gauges in use at the LNE- CETIAT laboratories. The effect of thermal transpiration has been studied. The explored temperature range lies between 250 K and 374 K, and the pressure range between 70 Pa and 105 Pa. An automatic data acquisition program was developed to monitor the pressure and temperature. The obtained results have been compared with available literature data. The preliminary uncertainty budget took into account several components: pressure measurements, temperature measurements, and environmental error sources such as thermal transpiration and hydrostatic correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hyland R.W.: J. Res. Natl. Bur. Stand. (US) A 79A, 551 (1975)

    Article  Google Scholar 

  2. Greenspan L.: J. Res. Natl. Bur. Stand. (US) A 80A, 41 (1976)

    Article  Google Scholar 

  3. B. Cretinon, J. Merigoux, La mesure de l’humidité dans les gaz, Bureau National de Metrologie (2000)

  4. Wexler A.: J. Res. Natl. Bur. Stand. (US) A 80A, 775 (1976)

    Article  Google Scholar 

  5. Wexler A.: J. Res. Natl. Bur. Stand. (US) A 81A, 5 (1977)

    Article  Google Scholar 

  6. Huber M.L., Laesecke A., Friend D.G.: Ind. Eng. Chem. 45, 7351 (2006)

    Article  Google Scholar 

  7. S. Boyes, S.A. Bell, Assessment of Fundamental Data Used in Humidity Metrology, NPL Report CMAM 42 (1999)

  8. M. Fulem, E. Samochin, T. Šimeček, E. Hulicius, K. Růžička, V. Růžička, Measurement of vapor pressure of selected organometallic precursors by a static method, in Presented at International Conference on Chemical Thermodynamics, Boulder, Colorado, USA (2006)

  9. Buck A.L.: J. Appl. Meteorol. 20, 1527 (1981)

    Article  ADS  Google Scholar 

  10. Sonntag D.: Z. Meteorol. 70, 40 (1990)

    Google Scholar 

  11. J.A. Goff, S. Gratch, in Proceedings of the 52nd Annual Meeting of the American Society of Heating and Ventilating Engineers, vol. 95 (1946), pp. 95–122

  12. Murphy D.M., Koop T.: Q.J.R. Meteorol. Soc. 131, 1539 (2005)

    Article  Google Scholar 

  13. Feistel R., Wagner W.: J. Phys. Chem. Ref. Data 35, 1021 (2006)

    Article  ADS  Google Scholar 

  14. Holborn L., Henning F.: Ann. Phys. 26, 833 (1908)

    Article  Google Scholar 

  15. Beattie J.A., Blaisdell B.E.: Am. Acad. Arts Sci. 71, 361 (1936)

    Article  Google Scholar 

  16. Moser H., Zmaczynski A.: Phys. Z. 40, 221 (1939)

    Google Scholar 

  17. Douslin D.R.: J. Chem. Thermodyn. 3, 187 (1971)

    Article  Google Scholar 

  18. Scheel K., Heuse W.: Ann. Phys. 29, 723 (1909)

    Article  Google Scholar 

  19. Jancsó G., Pupezin J., Van Hook W.A.: J. Phys. Chem. 74, 2984 (1970)

    Article  Google Scholar 

  20. Scheel K., Heuse W.: Ann. Phys. 31, 715 (1910)

    Article  Google Scholar 

  21. Douslin D.R., Osborn A.: J. Sci. Instrum. 42, 369 (1965)

    Article  ADS  Google Scholar 

  22. Stimson H.F.: J. Res. Natl. Bur. Stand. (US) 73A, 493 (1969)

    Article  Google Scholar 

  23. Besley L.M., Bottomley G.A.: J. Chem. Thermodyn. 5, 397 (1973)

    Article  Google Scholar 

  24. S. Weber, Commun. Phys. Lab. Univ. Leiden, No. 150 (1915)

  25. Marti J., Mauersberger K.: Geophys. Res. Lett. 20, 363 (1993)

    Article  ADS  Google Scholar 

  26. D. Sonntag, The history of formulations and measurements of saturation water vapor pressure, in Proceedings of the 3rd International Symposium on Humidity and Moisture, vol. 1 (NPL, Teddington, UK, 1998), pp. 93–102

  27. Dalton J.: Mem. Manch. Lit. Philos. Soc. 5, 550 (1803)

    Google Scholar 

  28. Wisniak J.: J. Phase Equilib. 22, 622 (2001)

    Google Scholar 

  29. Guildner I.A., Johnson D.P., Jones F.E.: Science 191, 1261 (1976)

    Article  ADS  Google Scholar 

  30. Regnault V.: Mém. Acad. Sci. 21, 635 (1847)

    Google Scholar 

  31. Mauersberger K., Krankowsky D.: Geophys. Res. Lett. 30, 1121 (2003)

    Article  ADS  Google Scholar 

  32. Mokbel I., Rauzy E., Loiseleur H., Berro C., Jose J.: Fluid Phase Equilib. 108, 103 (1995)

    Article  Google Scholar 

  33. Barber R.W., Emerson D.R.: Advances in Fluid Mechanics IV, pp. 207–216. WIT Press, Southampton (2002)

    Google Scholar 

  34. Yasumoto I.: J. Phys. Chem. 84, 589 (1980)

    Article  Google Scholar 

  35. Takaishi T., Sensui Y.: Trans. Faraday Soc. 59, 2503 (1963)

    Article  Google Scholar 

  36. Wagner W., Pruβ A.: J. Phys. Chem. Ref. Data. 31, 387 (2002)

    Article  ADS  Google Scholar 

  37. Smithsonian Meteorological Tables, 5th edn. (1984), p. 350

  38. A.L. Buck Research Manual (1996) updated equation from A.L. Buck, J. Appl. Meteorol. 20, 1527 (1981)

  39. Murray F.W.: J. Appl. Meteorol. 6, 203 (1967)

    Article  ADS  Google Scholar 

  40. World Meteorological Organization, General Meteorological Standards and Recommended Practices, Appendix A, WMO Technical Regulations, WMO-No. 49, corrigendum, Geneva (2000)

  41. Bolton D.: Mon. Weather Rev. 108, 1046 (1980)

    Article  ADS  Google Scholar 

  42. P.H. Huang, New equations for water vapor pressure in the temperature range −100°C to 100°C for Use with 1997 NIST/ASME Steam Tables, in Proceedings of the 3rd International Symposium on Humidity and Moisture, vol. 1 (NPL, Teddington, UK, 1979), pp. 68–76

  43. Lide, D.R. (eds): CRC Handbook of Chemistry and Physics, 72nd edn.. CRC Press, Boca Raton, FL (1991)

    Google Scholar 

  44. IAPWS, Revised Release on the Pressure Along Melting and Sublimation Curve of Ordinary Water Substance (2008). Available at http://www.iapws.org. Accessed September 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mokdad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokdad, S., Georgin, E., Mokbel, I. et al. On the Way to Determination of the Vapor-Pressure Curve of Pure Water. Int J Thermophys 33, 1374–1389 (2012). https://doi.org/10.1007/s10765-012-1261-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1261-6

Keywords

Navigation