Skip to main content
Log in

Experimental study of thermal performance on the adsorption of stearic acid into different morphology sepiolite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The different MSEP/SA composite phase change materials were prepared by direct impregnation method with SEP-v, SEP-p, SEP-f as supporting material. The thermal stability of the composite phase change materials was analyzed and the differences in the thermal properties and thermal reliability were compared, and provided reference for the study of different SEP to adsorb stearic acid (SA). The results indicated that there is no chemical reaction during the preparation of the composite PCMs. SEP-f has great advantages as a supporting material and its composite (65SEP-f/SA) has a good leak-proof performance with remaining mass ratio is above 99% for leakage test of 50 h. Besides, melting and freezing latent heat of three composite PCMs are similar, For 65SEP-f/SA, the melting latent heat is 76.10 J g−1 corresponds to the phase change temperature of 344.15 K and the freezing latent heat is 75.59 J g−1 corresponds to the phase change temperature of 336.85 K. The 65SEP-f/SA has the highest thermal conductivity of 0.9460 W m−1 K−1. It can be conducted that 65SEP-f/SA have great application potential in the field for low temperature phase change energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PCMs:

Phase change materials

SEP:

Sepiolite

MSEP:

Modified sepiolite, including SEP-v, SEP-f, SEP-p

SEP-v:

Modified sepiolite velvet

SEP-f:

Modified sepiolite fiber

SEP-p:

Modified sepiolite powder

SA:

Stearic acid

LA:

Lauric acid

References

  1. Rao ZH, Xu TT, Liu CZ, Zheng ZJ, Liang L, Hong K. Experimental study on thermal properties and thermal performance of eutectic hydrated salts/expanded perlite form-stable PCMs for passive solar energy utilization. Sol Energy Mater Sol Cells. 2018;188:6–17.

    Article  CAS  Google Scholar 

  2. Wang Y, Zhang L, Tao S, An Y, Meng C, Hu T. Phase change in modified hierarchically porous monolith: an extra energy increase. Microporous Mesoporous Mater. 2014;193:69–76.

    Article  CAS  Google Scholar 

  3. Zalba B, Marıin JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23:251–83.

    Article  CAS  Google Scholar 

  4. Lv PZ, Liu CZ, Rao ZH. Review on clay mineral-based form-stable phase change materials: preparation, characterization and applications. Renew Sustain Energy Rev. 2017;68:707–26.

    Article  CAS  Google Scholar 

  5. Sari A. Fabrication and thermal characterization of kaolin-based composite PCMs for latent heat storage in buildings. Energy Build. 2015;96:193–200.

    Article  Google Scholar 

  6. Lv PZ, Liu CZ, Rao ZH. Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable PCMs. Appl Energy. 2016;182:475–87.

    Article  CAS  Google Scholar 

  7. Huang R, Feng J, Ling Z, Fang X, Zhang Z. A sodium acetate trihydrate-formamide/expanded perlite composite with high latent heat and suitable phase change temperatures for use in building roof. Constr Build Mater. 2019;226:859–67.

    Article  CAS  Google Scholar 

  8. Liu C, Luo C, Xu T, Lv P, Rao Z. Experimental study on the thermal performance of capric acid-myristyl alcohol/expanded perlite composite PCMs for thermal energy storage. Sol Energy. 2019;191:585–95.

    Article  CAS  Google Scholar 

  9. Lv P, Ding M, Liu C, Rao Z. Experimental investigation on thermal properties and thermal performance enhancement of octadecanol/expanded perlite form stable PCMs for efficient thermal energy storage. Renew Energy. 2019;131:911–22.

    Article  CAS  Google Scholar 

  10. Sari A. Thermalenergy storage properties and laboratory-scale thermoregulation performance of bentonite/paraffin composite phase change material for energy-efficient buildings. J Mater Civ Eng. 2017;29(6):04017001.

    Article  Google Scholar 

  11. Sari A. Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials. Energy Convers Manag. 2016;117:132–41.

    Article  CAS  Google Scholar 

  12. Li CC, Fu LJ, Ouyang J, Yang HM. Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage. Sci Rep-UK. 2013;3:1908.

    Article  Google Scholar 

  13. Peng K, Fu L, Li X, Ouyang J, Yang H. Stearic acid modified montmorillonite as emerging microcapsules for thermal energy storage. Appl Clay Sci. 2017;138:100–6.

    Article  CAS  Google Scholar 

  14. Li M, Guo Q, Nutt S. Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage. Sol Energy. 2017;146:1–7.

    Article  Google Scholar 

  15. Jeong SG, Chang SJ, We S, Kim S. Energy efficient thermal storage montmorillonite with phase change material containing exfoliated graphite nanoplatelets. Sol Energy Mater Sol Cells. 2015;139:65–70.

    Article  CAS  Google Scholar 

  16. Xie N, Luo J, Li Z, Huang Z, Gao X, Fang Y, Zhang ZG. Salt hydrate/expanded vermiculite composite as a form-stable phase change material for building energy storage. Sol Energy Mater Sol Cells. 2019;189:33–42.

    CAS  Google Scholar 

  17. Wi S, Yang S, Park JH, Chang SJ, Kim S. Climatic cycling assessment of red clay/perlite and vermiculite composite PCM for improving thermal inertia in buildings. Build Environ. 2020;167:106464.

    Article  Google Scholar 

  18. Gu XB, Liu P, Bian L, He HC. Enhanced thermal conductivity of palmitic acid/mullite phase change composite with graphite powder for thermal energy storage. Renew Energy. 2019;138:833–41.

    Article  CAS  Google Scholar 

  19. Sari A, Sharma RK, Hekimoglu G, Tyagi VV. Preparation, characterization, and thermal energy storage properties and temperature control performance of form-stabilized sepiolite based composite PCMs. Energy Build. 2019;188–189:111–9.

    Article  Google Scholar 

  20. Karthik M, Faik A, Blanco-Rodriguez P, Rodríguez-Aseguinolaza J, Aguanno BD. Preparation of erythritol–graphite foam phase change composite with enhanced thermal conductivity for thermal energy storage applications. Carbon. 2015;94:266–76.

    Article  CAS  Google Scholar 

  21. Ling Z, Chen J, Xu T, Fang X, Gao X, Zhang Z. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model. Energy Convers Manag. 2015;102:202–8.

    Article  CAS  Google Scholar 

  22. Kim D, Jung J, Kim Y, Lee M, Seo J, Khan SB. Structure and thermal properties of octadecane/expanded graphite composites as shape-stabilized PCMs. Int J Heat Mass Transf. 2016;95:735–41.

    Article  CAS  Google Scholar 

  23. Liu R, Wang J, Zhang J, Xie S, Wang X, Ji Z. Honeycomb-like micro-mesoporous structure TiO2/sepiolite composite for combined chemisorption and photocatalytic elimination of formaldehyde. Microporous Mesoporous Mater. 2017;248:234–45.

    Article  CAS  Google Scholar 

  24. Duman O, Tunc S, Polat TG. Adsorptive removal of triarylmethane dye (Basic Red 9) from aqueous solution by sepiolite as effective and low-cost adsorbent. Microporous Mesoporous Mater. 2015;210:176–84.

    Article  CAS  Google Scholar 

  25. Shen Q, Ouyang J, Zhang Y, Yang HM. Lauric acid/modified sepiolite composite as a form-stable phase change material for thermal energy storage. Appl Clay Sci. 2017;146:14–22.

    Article  CAS  Google Scholar 

  26. Konuklu Y, Ersoy O. Preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage. Appl Therm Eng. 2016;107:575–82.

    Article  CAS  Google Scholar 

  27. Cui WW, Zhang HZ, Xia YP, Zou YJ, Xiang CL, Chu HL, Qiu SJ, Xu F, Sun LX. Preparation and thermophysical properties of a novel form-stable CaCl2·6H2O/sepiolite composite phase change material for latent heat storage. J Therm Anal Calorim. 2018;131:57–63.

    Article  CAS  Google Scholar 

  28. Shen Q, Liu S, Ouyang J, Yang H. Sepiolite supported stearic acid composites for thermal energy storage. RSC Adv. 2016;6:112493–501.

    Article  CAS  Google Scholar 

  29. Hong YX, Yan WT, Du J, Li WY, Xu T, Ye WB. Thermal performances of stearic acid/sepiolite composite form-stable phase change materials with improved thermal conductivity for thermal energy storage. J Therm Anal Calorim. 2020;142:2163–71.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Fund of Hunan Provincial Education Department (No. 19C1767), the National Natural Science Foundation of China (No. 51906094), the Public Welfare Technological Research Program of Science and Technology Department of Zhejiang Province (No. LGG18E060003) and the Research Program of Science and Technology Bureau of Lishui City (No. 2017RC03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Biao Ye or Yuxiang Hong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Standard variance of experimental data for leakage test.

The standard deviations of SA/SEP-f composite PCMs (%).

SEP-f mass fraction

Leakage time

0 h

0.5 h

1 h

1.5 h

2 h

26 h

50 h

65%

0

0.02862

0.01286

0.00819

0.00850

0.09851

0.06526

60%

0

0.01436

0.02196

0.03041

0.00379

0.05125

0.05501

55%

0

0.07927

0.12156

0.11049

0.17064

0.19766

0.14319

50%

0

0.11641

0.10162

0.11756

0.11750

0.31925

0.25057

45%

0

0.25451

0.16774

0.20801

0.19260

0.16445

0.02740

40%

0

0.50656

0.28343

0.52073

0.43015

0.08517

0.03775

35%

0

0.21958

0.31672

0.30867

0.21909

0.13890

0.18993

The standard deviation of SA/SEP-v composite PCMs (%).

SEP-v mass fraction

Leakage time

0 h

0.5 h

1 h

1.5 h

2 h

26 h

50 h

65%

0

0.12304

0.17678

0.22486

0.21284

0.57841

0.54853

60%

0

0.2885

0.32598

0.35072

0.34365

0.51902

0.35359

55%

0

0.20648

0.16971

0.15203

0.14213

0.20294

0.33290

50%

0

0.04243

0.02758

0.10182

0.14001

0.00707

0.54644

45%

0

0.21850

0.47942

0.65832

0.76226

0.45113

0.82262

40%

0

0.61518

1.00692

1.29047

1.55776

1.31946

1.80863

35%

0

1.29188

1.94808

2.47558

2.58943

1.25582

2.36270

The standard deviation of SA/SEP-p composite PCMs (%).

SEP-p mass fraction

Leakage time

0 h

0.5 h

1 h

1.5 h

2 h

26 h

50 h

65%

0

0.27468

0.15436

0.17534

0.26871

0.48157

0.69159

60%

0

0.04532

0.28870

0.41352

0.55783

0.86037

0.47553

55%

0

0.16897

0.14528

0.22368

0.56482

0.66974

1.28754

50%

0

0.46376

0.31852

0.35466

0.24454

0.90376

0.42108

45%

0

0.58943

0.87416

0.33938

0.59874

1.22348

0.57466

40%

0

1.75468

0.94318

1.80527

1.23619

1.56187

2.13887

35%

0

1.07459

1.37468

0.94558

1.52993

2.43327

1.94238

Appendix 2

The instrument errors.

  1. 1.

    Blast drying box:

    The temperature error: ± 1 °C;

  2. 2.

    Scanning electron microscopy (S4800):

    Electronic image movement: ± 12 µm;

  3. 3.

    XRD (D8 ADVANCE DAVINCI):

    Precision of Angle: ± 0.0001;

  4. 4.

    DSC (DSC214):

    Temperature repeatability: ± 0.01 °C (Standard metal);

    Enthalpy sensitivity: 0.1 µW;

    Enthalpy precision: ± 0.05% (Standard metal);

  5. 5.

    TGA (NETZSCH5, TGA 8000-Spectrum two-clarus SQ8T):

    Thermal drift: < 10 µg;

    Weighing accuracy: 10 ppm;

  6. 6.

    Thermal conductivity tester (TPS 2500 S):

    Measurement error: < 3%;

    Thermal diffusion coefficient: < 5%;

    Volumetric specific heat: < 7%.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, WT., Du, J., Ye, WB. et al. Experimental study of thermal performance on the adsorption of stearic acid into different morphology sepiolite. J Therm Anal Calorim 147, 4523–4532 (2022). https://doi.org/10.1007/s10973-021-10861-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10861-9

Keywords

Navigation