Skip to main content
Log in

Enhancing the thermal performance of a photovoltaic panel using nano-graphite/paraffin composite as phase change material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, a nano-graphite/paraffin composite is used to augment the cooling performance of a PV panel, which significantly increases the output power due to decreasing the thermal stresses and current mismatching problems. The constructed composite is a phase change material (PCM). In order to retard the melting of PCM, a finned tube-heat exchanger is inserted inside the PCM. At first step, pure paraffin and finned tube-heat exchanger are used for cooling of a PV panel and secondly, graphite nanoparticles (ϕ = 0.002–0.012 (w/v)) are combined with PCM. The results of temperature, voltage–ampere curves and the maximum power output of the PV panel using PCMs are compared with no cooling device. Results show that using the nano-graphite/paraffin composite has significantly added benefits over using pure paraffin. By increase in water flow rate, the surface temperature of the PV panel is decreased because of increase in the heat transfer rate between the water and PCM around the tubes. Average surface temperature of the PV module is reduced from 336.15 to 310.25 K by using nano-graphite PCM with ϕ = 0.01 (w/v) and the highest value of water flow rate (Q = 100 mL s−1). The maximum enhancement in the power output of the PV/nano-PCM system by using the efficient conditions is 21.2%. The proposed system not only boosts considerably the output electrical power, but also reduces the PV panel temperature while keeping it uniform for each cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A t :

Total area of the PV module (mm2)

\(\Delta A_{{\text{s}}}\) :

Area around the thermocouple attached to the surface of the module (mm2)

I :

Average severity on absorber dish (W m2)

I PV :

Current of photovoltaic arrays (A)

Q :

Volumetric water flow rate (mL s1)

P PCM :

Maximum generated power by PCM (W)

P out :

Power of PV module (W)

P pump :

Power of pump (W)

T surface :

Average surface temperature of PV module (K)

V PV :

Voltage of photovoltaic arrays (V)

ΔP :

Pressure drop (Pa)

max:

Maximum value

ave:

Average

i:

Index

COE:

Coefficient of energy

GNPs:

Graphite nanoparticles

NPs:

Nanoparticles

PV:

Photovoltaic

PCM:

Phase change material

TU:

Temperature uniformity

ρ :

Density (g cm3)

μ :

Viscosity (Pa s)

ϕ :

Volume fraction of nanoparticles (−)

μ f :

Viscosity of based-fluid (Pa s)

μ nf :

Viscosity of nanofluid (Pa s)

ρ f :

Density of based-fluid (g cm3)

ρ nf :

Density of nanofluid (g cm3)

ρ p :

Density of graphite nanoparticles (g cm3)

COE:

Coefficient of energy

GNPs:

Graphite nanoparticles

NPs:

Nanoparticles

PV:

Photovoltaic

PCM:

Phase change material

TU:

Temperature uniformity

ρ :

Density (g cm3)

μ :

Viscosity (Pa s)

ϕ :

Volume fraction of nanoparticles (−)

μ f :

Viscosity of based-fluid (Pa s)

μ nf :

Viscosity of nanofluid (Pa s)

ρ f :

Density of based-fluid (g cm3)

ρ nf :

Density of nanofluid (g cm3)

ρ p :

Density of graphite nanoparticles (g cm3)

References

  1. Heidari N, Rahimi M, Azimi N. Experimental investigation on using ferrofluid and rotating magnetic field (RMF) for cooling enhancement in a photovoltaic cell. Int Commun Heat Mass Transf. 2018;94:32–8.

    CAS  Google Scholar 

  2. Rashidi S, Kashefi MH, Hormozi F. Potential applications of inserts in solar thermal energy systems—a review to identify the gaps and frontier challenges. Sol Energy. 2018;171:929–52.

    Google Scholar 

  3. Rasih RA, Sidik NAC, Samion S. Recent progress on concentrating direct absorption solar collector using nanofluids: a review. J Therm Anal Calorim. 2019;137:903–22.

    CAS  Google Scholar 

  4. Sardarabadi M, Hosseinzadeh M, Kazemian A, Passandideh-Fard M. Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints. Energy. 2017;138:682–95.

    CAS  Google Scholar 

  5. Sardarabadi M, Passandideh-Fard M. Experimental and numerical study of metal-oxides/water nanofluids as coolant in photovoltaic thermal systems (PVT). Sol Energy Mater Sol. 2016;157:533–42.

    CAS  Google Scholar 

  6. Alshaheen AAS, Kianifar A, Rahimi AB. Experimental study of using nano-(GNP, MWCNT, and SWCNT)/water to investigate the performance of a PVT panel, Energy and exergy analysis. J Therm Anal Calorim. 2020;139:3549–61.

    Google Scholar 

  7. AL-Musawi AIA, Taheri A, Farzanehnia A, Sardarabadi M, Passandideh-Fard M. Numerical study of the effects of nanofluids and phase-change materials in photovoltaic thermal (PVT) systems. J Therm Anal Calorim. 2019;137:623–36.

    CAS  Google Scholar 

  8. Ammar AA, Sopian K, Alghoul MA, Elhub B, Elbreki AM. Performance study on photovoltaic/thermal solar-assisted heat pump System. J Therm Anal Calorim. 2019;136:79–87.

    CAS  Google Scholar 

  9. Chow TT, Hand JW, Strachan PA. Building-integrated PV and thermal applications in a subtropical hotel building. Appl Therm Eng. 2003;23:2035–49.

    CAS  Google Scholar 

  10. Karami N, Rahimi M. Heat transfer enhancement in a hybrid microchannel-photovoltaic cell using Boehmite nanofluid. Int Commun Heat Mass Transf. 2014;55:45–52.

    CAS  Google Scholar 

  11. Han X, Wang Y, Zhu L. The performance and long-term stability of silicon concen-trator solar cells immersed in dielectric liquids. Energy Convers Manag. 2013;66:189–98.

    CAS  Google Scholar 

  12. Rostami Z, Rahimi M, Azimi N. Using high-frequency ultrasound waves and nanofluid for increasing the efficiency and cooling performance of a PV panel. Energy Convers Manag. 2018;160:141–9.

    CAS  Google Scholar 

  13. Teo HG, Lee PS, Hawlader MNA. An active cooling system for photovoltaic panels. Appl Energy. 2012;90:309–15.

    Google Scholar 

  14. Zhu L, Wang Y, Fang Z, Sun Y, Huang Q. An effective heat dissipation method for densely packed solar cells under high concentrations. Sol Energy Mater Sol. 2010;94:133–40.

    CAS  Google Scholar 

  15. Barrau J, Rosell J, Chemisana D, Tadrist L, Ibañez M. Effect of a hybrid jet impingement/micro-channel cooling device on the performance of densely packed PV cells under high concentration. Sol Energy. 2011;85:2655–65.

    Google Scholar 

  16. Karami N, Rahimi M. Heat transfer enhancement in a PV cell using Boehmite nanofluid. Energy Convers Manag. 2014;86:275–85.

    CAS  Google Scholar 

  17. Sardarabadi M, Passandideh-Fard M, Maghrebi MJ, Ghazikhani M. Experimental study of using both ZnO/ water nanofluid and phase change material (PCM) in photovoltaic thermal systems. Sol Energy Mater Sol. 2017;161:62–9.

    CAS  Google Scholar 

  18. Islam MM, Pandey AK, Hasanuzzaman M, Rahim NA. Recent progresses and achievements in photovoltaic-phase change material technology: a review with special treatment on photovoltaic thermal-phase change material systems. Energy Convers Manag. 2016;126:177–204.

    CAS  Google Scholar 

  19. Khanna S, Reddy KS, Mallick TK. Optimization of finned solar photovoltaic phase change material (finned PV PCM) system. Int J Therm Sci. 2018;130:313–22.

    Google Scholar 

  20. Siahkamari L, Rahimi M, Azimi N, Banibayat M. Experimental investigation on using a novel phase change material (PCM) in micro structure photovoltaic cooling system. Int Commun Heat Mass Transf. 2019;100:60–6.

    CAS  Google Scholar 

  21. Rahimi M, Ranjbar AA, Ganji DD, Sedighi K, Hosseini MJ, Bahrampouri R. Analysis of geometrical and operational parameters of PCM in a fin and tube heat exchanger. Int Commun Heat Mass Transf. 2014;53:109–15.

    CAS  Google Scholar 

  22. Karunamurthy K, Murugumohankumar K, Suresh S. Use of CuO nanomaterial for the improvement of thermal conductivity and performance of low temperature energy storage system of solar pond. Dig J Nanomater Biostruct. 2012;7:1833–41.

    Google Scholar 

  23. Hajare VS, Gawali BS. Experimental study of latent heat storage system using nano-mixed phase change material. Int J Eng Technol Manag Appl Sci. 2015;3:2349–4476.

    Google Scholar 

  24. Rashidi S, Karimi N, Mahian O, Esfahani JAA. concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim. 2019;132:1145–59.

    Google Scholar 

  25. Rashidi S, Akbarzadeh M, Karimi N, Masoodi R. Combined effects of nanofluid and transverse twisted-baffles on the flow structures, heat transfer and irreversibilities inside a square duct—a numerical study. Appl Therm Eng. 2018;130:135–48.

    CAS  Google Scholar 

  26. Atkin P, Farid MM. Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminum fins. Sol Energy. 2015;114:217–28.

    CAS  Google Scholar 

  27. Rashidi S, Shamsabadi H, Esfahani JA, Harmand S. A review on potentials of coupling PCM storage panels to heat pipes and heat pumps. J Therm Anal Calorim. 2020;140:1655–713.

    CAS  Google Scholar 

  28. AlWaeli AHA, Sopian K, Chaichan MT, Kazem HA, Ibrahim A, Mat S, Ruslan MH. Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: an experimental study. Energy Convers Manag. 2017;151:693–708.

    CAS  Google Scholar 

  29. Sar A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng. 2007;27:1271–7.

    Google Scholar 

  30. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems: a review. J Therm Anal Calorim. 2018;131:2027–39.

    CAS  Google Scholar 

  31. Rashidi S, Rahbar N, Valipour MS, Esfahani JA. Enhancement of solar still by reticular porous media: experimental investigation with exergy and economic analysis. Appl Therm Eng. 2018;130:1341–8.

    Google Scholar 

  32. Zalba B, Marin JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23:251–83.

    CAS  Google Scholar 

  33. Xu T, Chen Q, Huang G, Zhang Z, Gao X, Lu S. Preparation and thermal energy storage properties of D-Mannitol/expanded graphite composite phase change material. Sol Energy Mater Sol Cells. 2016;155:141–6.

    CAS  Google Scholar 

  34. Pincemin S, Olives R, Py X, Christ M. Highly conductive composites made of phase change materials and graphite for thermal storage. Sol Energy Mater Sol Cells. 2008;92:603–13.

    CAS  Google Scholar 

  35. Huang MJ, Eames PC, Norton B. Phase change materials for limiting temperature rise in building integrated photovoltaics. Sol Energy. 2006;80:1121–30.

    CAS  Google Scholar 

  36. Huang MJ, Eames PC, Norton B, Hewitt NJ. Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics. Sol Energy Mater Sol Cells. 2011;95:1598–603.

    CAS  Google Scholar 

  37. Huang MJ. Two-phase change material with different closed shape fins in building integrated photovoltaic system temperature regulation, World Renewable Energy Congress, Sweden. 8–113 May; 2011

  38. Huang MJ, Eames PC, Norton B. Thermal regulation of building-integrated photovoltaics using phase change materials. Int J Heat Mass Transf. 2004;47:2715–33.

    CAS  Google Scholar 

  39. Sheikholeslami M, Arabkoohsar A, Shafee A, Ismail KAR. Second law analysis of a porous structured enclosure with nano-enhanced phase change material and under magnetic force. J Therm Anal Calorim. 2020;140:2585–99.

    CAS  Google Scholar 

  40. Abdelrahman HE, Wahba MH, Refaey HA, Moawad M, Berbish NS. Performance enhancement of photovoltaic cells by changing configuration and using PCM (RT35HC) with nanoparticles Al2O3. Sol Energy. 2019;177:665–71.

    CAS  Google Scholar 

  41. Li M. A nano-graphite/paraffin phase change material with high thermal conductivity. Appl Energy. 2013;106:25–30.

    CAS  Google Scholar 

  42. Zhao CY, Lu W, Tian Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Sol Energy. 2010;84:1402–12.

    CAS  Google Scholar 

  43. Zhengguo Z, Xiaoming F. Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Convers Manag. 2006;47:303–10.

    Google Scholar 

  44. Muhammad K, Hayat T, Alsaedi A, Ahmad B. A comparative study for convective flow of basefuid (gasoline oil), nanomaterial (SWCNTs) and hybrid nanomaterial (SWCNTs+MWCNTs). Appl Nanosci. 2020. https://doi.org/10.1007/s13204-020-01559-9.

    Article  Google Scholar 

  45. Rashidi S, Javadi P, Esfahani JA. Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate. J Therm Anal Calorim. 2019;135:551–63.

    CAS  Google Scholar 

  46. Shamsabadi H, Rashidi S, Esfahani JA. Entropy generation analysis for nanofluid flow inside a duct equipped with porous baffles. J Therm Anal Calorim. 2019;135:1009–19.

    CAS  Google Scholar 

  47. Akar S, Rashidi S, Esfahani JA. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim. 2018;132:1189–200.

    CAS  Google Scholar 

  48. Muhammad K, Hayat T, Alsaedi A, Ahmad B. Melting heat transfer in squeezing flow of basefuid (water), nanofluid (CNTs+water) and hybrid nanofuid (CNTs+CuO+water). J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09391-7.

    Article  Google Scholar 

  49. Muhammad K, Hayat T, Alsaedi A, Ahmad B, Momani S. Mixed convective slip flow of hybrid nanofuid (MWCNTs+Cu+Water), nanofuid (MWCNTs+Water) and base fluid mass (Water): a comparative investigation. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09577-z.

    Article  Google Scholar 

  50. Valitabar M, Rahimi M, Azimi N. Experimental investigation on forced convection heat transfer of ferrofluid between two-parallel plates. Heat Mass Transf. 2020;56:53–64.

    CAS  Google Scholar 

  51. Muhammad K, Hayat T, Alsaedi A. Numerical study of Newtonian heating in flow of hybrid nanofluid (SWCNTs+CuO+Ethylene glycol) past a curved surface with viscous dissipation. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10196-x.

    Article  Google Scholar 

  52. Karami E, Rahimi M, Azimi N. Convective heat transfer enhancement in a pitted microchannel by stimulation of magnetic nanoparticles. Chem Eng Process. 2018;126:156–67.

    CAS  Google Scholar 

  53. Azimi N, Rahimi M, Khodaei MM, Roshani M, Karami E, Ebrahimi E, Mohammadi F. Intensification of liquid-liquid extraction in a tubular sono-extractor using 1.7 MHz ultrasound and SiO2 nanoparticles. Chem Eng Process. 2019;137:28–38.

    CAS  Google Scholar 

  54. Moharram KA, Abd-Elhady MS, Kandil HK, El-Sherif H. Enhancing the performance of photovoltaic panels by water cooling. Ain Shams Eng J. 2013;4:869–77.

    Google Scholar 

  55. Rostami Z, Rahimi M, Azimi N. Integrating the process of Ni (II) ions removal from aqueous solution and cooling of a photovoltaic module by 17 MHz ultrasound waves. J Appl Res Water Wastewater. 2020;13:70–6.

    Google Scholar 

  56. Heidari N, Rahimi M, Azimi N. Cooling enhancement of a photovoltaic panel through ferrofluid stimulation using a magnetic-wind turbine. Iran J Chem Eng. 2020;16:35–52.

    Google Scholar 

  57. Sheikholeslami M, Jafaryar M, Shafee A, Babazadeh H. Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin. J Clean Prod. 2020;261:121206.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neda Azimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, Z., Heidari, N., Rahimi, M. et al. Enhancing the thermal performance of a photovoltaic panel using nano-graphite/paraffin composite as phase change material. J Therm Anal Calorim 147, 3947–3964 (2022). https://doi.org/10.1007/s10973-021-10726-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10726-1

Keywords

Navigation