Skip to main content
Log in

Open challenges in sol–gel science and technology

  • Invited Paper: Industrial and technological applications of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Focusing on three different applications of sol–gel functional materials holding the potential to replace widely employed commercial products with significant economic and technical benefits, this study offers an original perspective on open challenges in sol–gel material science and technology. The applications discussed were selected on the basis of their societal and economic relevance and do not intend to represent the field of sol–gel material in general. The conclusions, however, are of general value and will hopefully aid young researchers and new companies to succeed in their efforts to commercialize chemical innovations based on sol–gel-derived functional materials.

Highlights

  • Focusing on three different applications of sol–gel functional materials, this study offers an original perspective on open challenges in sol–gel science and technology.

  • Technical and economic obstacles have limited the industrial uptake of sol–gel functional products to replace conventional products generally based on polymers.

  • For silica-based sol–gel functional products to become ubiquitous in fields today dominated by polymers, the direct route to obtain silicon alkoxides from waste organic (or inorganic) silica must be commercialized on large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. Levy D, Zayat M (eds) (2015) The sol–gel handbook. Wiley-VCH, Weinheim

  2. Klein L, Aparicio M, Jitianu A (eds) (2018) Handbook of sol–gel science and technology. Springer International Publishing, Cham (Switzerland)

  3. Sukka S (2018), History of the sol-gel chemistry and technology. In Klein L, Aparicio M, Jitianu A (eds), Handbook of sol-gel science and technology. Springer International Publishing, Cham (Switzerland), pp.3–29

  4. Zelinski BJJ, Brinker CJ, Clark DE, Ulrich DR (eds) (1990). See for example the proceedings of the symposium held April 16–20 1990 in San Francisco. Better ceramics through chemistry IV, Materials Research Society, Pittsburgh, PA

  5. Pillai SC, Hehir S (eds) (2017), Sol-gel materials for energy, environment and electronic applications. In: Aegerter M, Prassas M (series eds) Advances in sol-gel derived materials and technologies. Springer Nature Switzerland, Cham

  6. Arenillas A, Menéndez JA, Reichenauer G, Celzard A, Fierro V, Maldonado Hodar FJ, Bailόn-Garcia E, Job N (2019) Organic and carbon gels. In: Aegerter M, Prassas M (Series eds) Advances in sol-gel derived materials and technologies. Springer Nature Switzerland, Cham

  7. Almeida R, Martucci A, Santos L, Rojas Hernández RE (eds) (2020) Sol-gel derived optical and photonic materials, Woodhead Publishing, Sawston (UK)

  8. Pierre AC (2020) Introduction to sol-gel processing. Springer Nature, Switzerland, Cham

    Book  Google Scholar 

  9. Mordor Intelligence (2021) Sol-gel coatings market—segmented by product type, end-user industry, and geography—growth, trends, COVID-19 Impact, and Forecasts (2021–2026), Hyderabad

  10. Search carried out on March 3, 2021, using the search term “sol-gel” on the website accessible at the https://patents.google.com/

  11. Bartlett J (2020) Sol-gel science and technology—the microstructure of our community, ISGS Newsletter. https://www.isgs.org/wp-content/uploads/2020/06/ISGS-Newsletter-2020-06-Final.pdf

  12. Mordor Intelligence (2021) Sol-gel products market—segmented by product type, end-user industry, and geography—growth, trends, COVID-19 impact, and forecasts (2021–2026), Hyderabad. https://www.mordorintelligence.com/industry-reports/sol-gel-products-market Accessed 4 Mar 2021

  13. Choi D, Kumta PN (2007) Surfactant based sol–gel approach to nanostructured LiFePO4 for high rate Li-ion batteries. J Power Sour 163:1064–1069

    Article  CAS  Google Scholar 

  14. Ciriminna R, Albo Y, Pagliaro M (2020) Sol-gel nanocoatings to functionalize fibers and textiles: a critical perspective. ChemistrySelect 5:9776–9780

    Article  CAS  Google Scholar 

  15. Haufe H, Muschter K, Siegert J, Böttcher H (2008) Bioactive textiles by sol–gel immobilised natural active agents. J Sol–Gel Sci Technol 45:97–101

    Article  CAS  Google Scholar 

  16. Nano4Life Europe, Nano4 Textile, Agios Dimitrios (Greece). https://www.nano4life.co/product-page/325050070-nano4-textile-500ml Accessed 4 Mar 2021

  17. NewPro, NewPro Nano Textile 4NC, Monheim a. Rhein (Germany). https://www.newpro.de/en/newpro-nano-textile.html Accessed 4 Mar 2021

  18. Markets and Markets (2020) Silicone market by type (elastomers, fluids, resins, gels), end-use industry (industrial process, building & construction, personal care & consumer products, transportation, electronics, medical & healthcare, energy). Region—Global Forecasts to 2025, Northbrook, IL

  19. Ciriminna R, Fidalgo A, Béland F, Pandarus V, Ilharco LM, Pagliaro M (2013) The sol–gel route to advanced silica-based materials and recent applications. Chem Rev 113:6592–6620

    Article  CAS  Google Scholar 

  20. For 99.5% TEOS sold by Shanghai Ruizheng Chemical Technology. See at the URL: https://www.alibaba.com/product-detail/Hot-selling-high-quality-low-price_1600187884554.html?spm=a2700.7724857.normal_offer.d_title.121965f9Fm3qdV Accessed 4 Mar 2021

  21. Laine RM, Furgal JC, Doan P, Pan D, Popova V, Zhang X (2016) Avoiding carbothermal reduction: distillation of alkoxysilanes from biogenic, green, and sustainable sources. Angew Chem Int Ed 55:1065

    Article  CAS  Google Scholar 

  22. Fukaya N, Jib Choi S, Horikoshi T, Kataoka S, Endo A, Kumai H, Hasegawa M, Sato K, Cho J-C (2017) Direct synthesis of tetraalkoxysilanes from silica and alcohols. N J Chem 41:2224–2226

    Article  CAS  Google Scholar 

  23. Putro WS, Fukaya K, Choi J-C, Choi SJ, Horikoshi T, Sato K, Fukaya N (2020) Direct transformation of silica from natural resources to form tetramethoxysilane. Bull Chem Soc Jpn 93:958–962

    Article  CAS  Google Scholar 

  24. Castricum HL, Kreiter R, van Veen HM, Blank DHA, Vente JF, ten Elshof JE (2008) High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability. J Membr Sci 324:111–118

    Article  CAS  Google Scholar 

  25. ECN grants Pervatech a licence to commercialise HybSi membrane technology (2010) Membrane technologies 2010(8):1

    Google Scholar 

  26. Energy research Centre of the Netherlands, ECN presents the revolutionary HybSi membrane that allows you to save up to 50% of energy and costs, increase product quality and reduce side products of separation processes significantly, https://www.hybsi.com Accessed 9 Mar 2021

  27. ten Elshof JE (2016) Hybrid materials for molecular sieves. In: Klein L, Aparicio M, Jitianu A (eds) Handbook of sol–gel science and technology. Springer International Publishing Switzerland, Cham. pp.1–27

  28. Wang J, Tanuwidjaja D, Bhattacharjee S, Edalat A, Jassby AD, Hoek DEMV (2020) Produced water desalination via pervaporative distillation. Water 12:3560

    Article  CAS  Google Scholar 

  29. Raza W, Yang J, Wang J, Saulat H, He G, Lu J, Zhang Y (2020) HCl modification and pervaporation performance of BTESE membrane for the dehydration of acetic acid/water mixture. Sep Purif Technol 235:116102

    Article  CAS  Google Scholar 

  30. Brüschke HEA (2001) State-of-art of pervaporation processes in the chemical industry. In Nunes SP, Peinemann K-V (eds) Membrane technology in the chemical industry, Wiley-VCH, Weinheim. pp. 127–172

  31. Ren T (2009) Barriers and drivers for process innovation in the petrochemical industry: a case study. J Eng Technol Manag 26:285–304

    Article  Google Scholar 

  32. Raza W, Wang J, Yang J, Tsuru T (2021) Progress in pervaporation membranes for dehydration of acetic acid. Sep Purif Technol 262:118338

    Article  CAS  Google Scholar 

  33. Sigma-Aldrich. 1,2-bis(trimethoxysilyl)ethane https://www.sigmaaldrich.com/catalog/product/aldrich/447242?lang=it&region=IT Accessed 10 Mar 2021

  34. Puputti J, Jin H, Rosenholm J, Jiang H, Lindén M (2009) The use of an impure inorganic precursor for the synthesis of highly siliceous mesoporous materials under acidic conditions. Microporous Mesoporous Mater 126:272–275

    Article  CAS  Google Scholar 

  35. Kaya GG, Deveci H (2020) Synergistic effects of silica aerogels/xerogels on properties of polymer composites: a review. J Ind Eng Chem 89:13–27

    Article  Google Scholar 

  36. Pandarus V, Ciriminna R, Béland F, Pagliaro M, Kaliaguine S (2017) Solvent-free chemoselective hydrogenation of squalene to squalane. ACS Omega 2:3989–3996

    Article  CAS  Google Scholar 

  37. Ciriminna R, Pandarus V, Béland F, Pagliaro M (2014) Catalytic hydrogenation of squalene to squalane. Org Process Res Dev 18:1110–1115

    Article  CAS  Google Scholar 

  38. Pandarus V, Ciriminna R, Gingras G, Béland F, Pagliaro M, Kaliaguine S (2018) Hydrogenolysis of C–O chemical bonds of broad scope mediated by a new spherical sol–gel catalyst. ChemistryOpen 7:80–91

    Article  CAS  Google Scholar 

  39. Ciriminna R, Palmisano G, Pagliaro M (2010) Shape and structural effects in silica-based functional materials. Chem Rec 10:17–28

    Article  Google Scholar 

  40. Jhung SH, Romanenko AV, Lee KH, Park YS, Moroz EM, Likholobov VA (2002) Carbon-supported palladium-ruthenium catalyst for hydropurification of terephthalic acid. Appl Catal A 225:131–139

    Article  CAS  Google Scholar 

  41. Pandarus V, Ciriminna R, Gingras G, Béland F, Pagliaro M, Kaliaguine S (2019) Waste-free and efficient hydrosilylation of olefins. Green Chem 21:129–140

    Article  CAS  Google Scholar 

  42. Garcia S, Poulston S, Stavarek P (2021) Ni-free hydrogenation of natural products for the personal care industry: case study, squalene hydrogenation. In: Kaliaguine S, Dubois J-L (eds), Industrial green chemistry. de Gruyter, Berlin, pp. 115–138

  43. Pandarus V, Gingras G, Béland F, Ciriminna R, Pagliaro M (2012) Selective hydrogenation of vegetable oils over SiliaCat Pd(0). Org Process Res Dev 16:1307–1311

    Article  CAS  Google Scholar 

  44. Vásquez-Céspedes S, Betori RC, Cismesia MA, Kirsch JK, Yang Q (2021) Heterogeneous catalysis for cross-coupling reactions: an underutilized powerful and sustainable tool in the fine chemical industry? Org Process Res Dev https://doi.org/10.1021/acs.oprd.1c00041

  45. Scurria A, Pagliaro M, Ciriminna R (2021) Quick, convenient, and clean: advancing education in green chemistry and nanocatalysis using sol-gel catalysts under flow. Preprints https://doi.org/10.20944/preprints202104.0027.v1

  46. Ciriminna R, Pagliaro M, Luque R (2021) Heterogeneous catalysis under flow for the 21st century fine chemical industry, Green Energy Environ https://doi.org/10.1016/j.gee.2020.09.013

  47. Pagliaro M (2021) Catalysis: a unified approach»: a new course in catalysis science and technology. J Flow Chem 11:53–58

    Article  CAS  Google Scholar 

  48. Lapidot N, Gans O, Biagini F et al. (2003) Advanced sunscreens: UV absorbers encapsulated in sol-gel glass microcapsules. J Sol–Gel Sci Technol 26:67–72

    Article  CAS  Google Scholar 

  49. Pandarus V, Ciriminna R, Béland F, Pagliaro M (2020) Making fine chemicals, nanomaterials and pharmaceutical ingredients over over SiliaCat catalysts. Appl Mater Today 20:100661

    Article  Google Scholar 

  50. Oyola-Rivera O, He J, Huber GW, Dumesic JA, Cardona-Martínez N (2019) Catalytic dehydration of levoglucosan to levoglucosenone using Brønsted solid acid catalysts in tetrahydrofuran. Green Chem 21:4988–4999

    Article  CAS  Google Scholar 

  51. Park B (2020) Twyneo under review for acne vulgaris, MPR. https://www.empr.com/home/news/drugs-in-the-pipeline/twyneo-fixed-dose-combination-tretinoin-retinoid-benzolyl-peroxide/ Accessed 10 Mar 2021

  52. Laine RM (2021) Personal correspondence with M.P

  53. Pagliaro M (2019) An industry in transition: the chemical industry and the megatrends driving its forthcoming transformation. Angew Chem Int Ed 58:11154–11159

    Article  CAS  Google Scholar 

  54. Global Industry Analysts (2020) Global sol–gel coatings industry, San Jose, CA

Download references

Acknowledgements

Thanks to Professor Richard M. Laine, University of Michigan, for helpful correspondence. This article is dedicated to Professor Horst Böttcher, formerly at Dresden’s GMBU, on the occasion of his 80th birthday.

Author contributions

RC and MP conceived the study. MP wrote the first draft of this study. RC reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Pagliaro.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciriminna, R., Pagliaro, M. Open challenges in sol–gel science and technology. J Sol-Gel Sci Technol 101, 29–36 (2022). https://doi.org/10.1007/s10971-021-05535-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05535-9

Keywords

Navigation