Skip to main content
Log in

Microfabrication by two-photon lithography, and characterization, of SiO2/TiO2 based hybrid and ceramic microstructures

  • Review Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

High resolution fabrication using two-photon lithography is extensively studied for a large range of materials, from polymer to inorganics. Hybrid materials including a sol–gel step have been developed since two decades to increase mechanical or optical properties in particular on silicon-based materials. Among the metal oxide, few studies have been dedicated to titanium and, because of the high reactivity of titanium precursors, obtaining a resin with a high part of titanium is challenging. Indeed, resins for two-photon lithography have to be stable for the processing time and titanium precursors are more difficult to operate due to their higher reactivity and often require extreme working conditions in order to control the chemical processes. Here, we propose a method, working at ambient conditions, to print submicronic structures of organic–inorganic hybrids with a large proportion of titanium and ceramics using high resolution two-photon process. The material obtained and its evolution during the pyrolysis at 600 and 1000 °C are characterized. We show that TiO2/SiO2-based microceramics can be obtained after the pyrolysis of the microstructures. The respective roles of the two chemical reactions involved in this lithography process, sol–gel condensation and radical photopolymerization, are highlighted.

Highlights

  • 3D printing using two-photon absorption processes for the fabrication of high resolution at the submicronic scale of ceramic components.

  • Printing TiO2-based ceramics of various compositions, controlling the resolution, structures, and shape after annealing is an important challenge and open perspective to large range of applications.

  • Two chemical reactions concomitantly involved during the process are critical, sol–gel condensation and radical photopolymerization.

  • Sol–gel approaches toward high resolution 3D printed ceramics is an extremely promising method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zaouk R, Park BY, Madou MJ (2005) Introduction to microfabrication techniques. In: Minteer SD (ed) Microfluidic techniques. Humana Press, New Jersey, p. 321

  2. Park SG, Jeon TY, Yang SM (2013) Fabrication of 3D nanostructured Titania materials by prism holographic lithography and the sol-gel reaction. Langmuir 29(31):9620. https://doi.org/10.1021/la4023163

    Article  CAS  Google Scholar 

  3. Lim SH, Saifullah MSM, Hussain H, Loh WW, Low HY (2010) Direct imprinting of high resolution TiO2 nanostructures. Nanotechnology 21(28):285303. https://doi.org/10.1088/0957-4484/21/28/285303

    Article  CAS  Google Scholar 

  4. Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett 22(2):132. https://doi.org/10.1364/OL.22.000132

    Article  CAS  Google Scholar 

  5. Wang I, Bouriau M, Baldeck P, Martineau C, Andraud C (2002) Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser. Opt Lett 27:1348. https://doi.org/10.1364/OL.27.001348

    Article  CAS  Google Scholar 

  6. Sun HB, Kawata S (2004) Two-photon photopolymerization and 3D lithographic microfabrication. APS 170:169. https://doi.org/10.1007/b94405

    Article  CAS  Google Scholar 

  7. Farsari M, Chichkov B (2009) Two-photon fabrication. Nat Photon 3:450. https://doi.org/10.1038/nphoton.2009.131

    Article  CAS  Google Scholar 

  8. Ostendorf A, Chichkov B (2006) Two-photon polymerization: a new approach to micromachining. Photon Spectra 40:72

    Google Scholar 

  9. Serbin J, Egbert A, Ostendorf A, Chichkov B, Houbertz R, Domann G, Schulz J, Cronauer C, Fröhlich L, Popall M (2003) Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics. Opt Lett 28:301–303. https://doi.org/10.1364/OL.28.000301

    Article  CAS  Google Scholar 

  10. Sakellari I, Gaidukeviciute A, Giakoumaki A, Gray D, Fotakis C, Farsari M, Vamvakaki M, Reinhardt C, Ovsianikov A, Chichkov BN (2010) Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication. Appl Phys A 100(2):359. https://doi.org/10.1007/s00339-010-5864-0

    Article  CAS  Google Scholar 

  11. Ovsianikov A, Gaidukeviciute A, Chichkov BN, Oubaha M, MacCraith BD, Sakellari I, Giakoumaki A, Gray D, Vamvakaki M, Farsari M, Fotakis C (2008) Two-photon polymerization of hybrid sol-gel materials for photonics applications. Laser Chem 2008:493059. https://doi.org/10.1155/2008/493059

    Article  CAS  Google Scholar 

  12. Ovsianikov A, Viertl J, Chichkov B, Oubaha M, MacCraith B, Sakellari I, Giakoumaki A, Gray D, Vamvakaki M, Farsari M, Fotakis C (2008) Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2(11):2257. https://doi.org/10.1021/nn800451w

    Article  CAS  Google Scholar 

  13. Vyatskikh A, Delalande S, Kudo A, Zhang X, Portela CM, Greer JR (2018) Additive manufacturing of 3D nano-architected metals. Nat Commun 9:593. https://doi.org/10.1038/s41467-018-03071-9

    Article  CAS  Google Scholar 

  14. Kustra J (2018) Elaboration of micro and mesostructured sol-gel materials using polysilsesquioxane molecular precursors. Ph.D. thesis, University of Lyon1, Lyon

  15. Kustra J, Martin E, Chateau D, Lerouge F, Monnereau C, Andraud C, Sitarz M, Baldeck PL, Parola S (2017) Two-photon controlled sol–gel condensation for the microfabrication of silica based microstructures. The role of photoacids and photobases. RSC Adv 7(74):46615. https://doi.org/10.1039/C7RA08608C

    Article  CAS  Google Scholar 

  16. Lim TW, Son Y, Yang D-Y, Pham TA, Kim DP, Yang BI, Lee KS, Park SH (2008) Net shape manufacturing of three-dimensional SiCN ceramic microstructures using an isotropic shrinkage method by introducing shrinkage guiders. Int J Appl Ceram Technol 5:258–264. https://doi.org/10.1111/j.1744-7402.2008.02234.x

    Article  CAS  Google Scholar 

  17. Gailevičius D, Padolskytė V, Mikoliūnaitė L, Šakirzanovas S, Juodkazis S, Malinauskas M (2019) Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution. Nanoscale Horiz 4:647–651. https://doi.org/10.1039/C8NH00293B

    Article  Google Scholar 

  18. Eckel ZC, Zhou C, Martin JH, Jacobsen AJ, Carter WB, Schaedler TA (2016) Additive manufacturing of polymer-derived ceramics. Science 351:58–62. https://doi.org/10.1126/science.aad2688

    Article  CAS  Google Scholar 

  19. Enyashin AN, Seifert G (2005) Structure, stability and electronic properties of TiO2 nanostructures. Phys Status Solidi (b) 242:1361–1370. https://doi.org/10.1002/pssb.200540026

    Article  CAS  Google Scholar 

  20. Tang H, Prasad K, Sanjinès R, Schmid PE, Lévy F (1994) Electrical and optical properties of TiO2 anatase thin films. J Appl Phys 75:2042–2047. https://doi.org/10.1063/1.356306

    Article  CAS  Google Scholar 

  21. Declerck P, Houbertz R, Jakopic G, Passinger S, Chichkov B (2007) High refractive index inorganic-organic hybrid materials for photonic applications. In: MRS online proceedings library archive 1007. https://doi.org/10.1557/PROC-1007-S01-02

  22. Yu SY, Schrodj G, Mougin K, Dentzer J, Malval JP, Zan HW, Soppera O, Spangenberg A (2018) Direct laser writing of crystallized TiO2 and TiO2/carbon microstructures with tunable conductive properties. Adv Mater 30(51):1805093. https://doi.org/10.1002/adma.201805093

    Article  CAS  Google Scholar 

  23. Psycharakis S, Tosca A, Melissinaki V, Giakoumaki A, Ranella A (2011) Tailor-made three-dimensional hybrid scaffolds for cell cultures. Biomed Mater 6:045008. https://doi.org/10.1088/1748-6041/6/4/045008

    Article  CAS  Google Scholar 

  24. Balčiūnas E, Baldock SJ, Dreižė N, Grubliauskaitė M, Coultas S, Rochester DL, Valius M, Hardy JG, Baltriukienė D (2019) 3D printing hybrid organometallic polymer-based biomaterials via laser two-photon polymerization. Polym Int 68:1928–1940. https://doi.org/10.1002/pi.5909

    Article  CAS  Google Scholar 

  25. Rozes L, D’Arras L, Hoffman C, Potier F, Halttunen N, Nicole L (2015) Titania-based hybrid materials: from molecular precursors to the controlled design of hierarchical hybrid materials. In: Chemistry of organo-hybrids. John Wiley & Sons, Ltd, p. 114

  26. Schubert U (2005) Chemical modification of titanium alkoxides for sol–gel processing. J Mater Chem 15(35–36):3701. https://doi.org/10.1039/B504269K

    Article  CAS  Google Scholar 

  27. Schubert U (2004) Organofunctional metal oxide clusters as building blocks for inorganic-organic hybrid materials. J Sol–Gel Sci Technol 31(1):19. https://doi.org/10.1023/B:JSST.0000047954.70820.dd

    Article  CAS  Google Scholar 

  28. de Miguel G, Vicidomini G, Harke B, Diaspro A (2015) Linewidth and writing resolution. In: Baldacchini T (ed) Three-dimensional microfabrication using two-photon polymerization: fundamentals, technology, and applications. William Andrew, USA, p. 190

  29. Yee DW, Lifson ML, Edwards BW, Greer JR (2019) Additive manufacturing of 3D-architected multifunctional metal oxides. Adv Mater 31:1901345. https://doi.org/10.1002/adma.201901345

    Article  CAS  Google Scholar 

  30. Lee DH, Choi SY (2004) Preparation of photocatalytic TiO2−SiO2 thin film by sol-gel coating. Met Mater Int 10(4):357. https://doi.org/10.1007/BF03185985

    Article  CAS  Google Scholar 

  31. Lin YH, Weng CH, Srivastav AL, Lin YT, Tzeng JH (2015) Facile synthesis and characterization of N-doped TiO2 photocatalyst and its visible-light activity for photo-oxidation of ethylene. J Nanomat 807394. https://doi.org/10.1155/2015/807394

  32. Bahtat M, Mugnier J, Bovier C, Roux H, Serughetti J (1992) Waveguide Raman spectroscopy of TiO2:SiO2 thin films. J Non-Cryst Solids 147:123. https://doi.org/10.1016/S0022-3093(05)80604-0

    Article  Google Scholar 

  33. Best MF, Condrate RA (1985) A raman study of TiO2-SiO2 glasses prepared by sol-gel processes. J Mater Sci Lett 4(8):994. https://doi.org/10.1007/BF00721102

    Article  CAS  Google Scholar 

  34. Ohsaka T, Izumi F, Fujiki Y (1978) Raman spectrum of anatase, TiO2. J Raman Spectrosc 7:321–324. https://doi.org/10.1002/jrs.1250070606

    Article  Google Scholar 

  35. Montagnac G (2019) SSHADE/REAP: Raman experiments for astrobiology and planetology. SSHADE (OSUG Data Center). Service/Database. Grenoble. https://doi.org/10.26302/SSHADE/REAP

  36. Thirumalai J (2017) Thin film processes: artifacts on surface phenomena and technological facets, IntechOpen, London

Download references

Acknowledgements

The authors are grateful to the European Union’s Horizon 2020 research and innovation program PHENOmenon under grant agreement no. 780278 for funding and to the Raman facility in Lyon (France) supported by the Institut National des Sciences de l’Univers (INSU) and the “Programme National de Planétologie”. This is a contribution of the LABEX Lyon Institute of Origins (ANR-10-LABX-0066), within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) at Université de Lyon. The region Auvergne-Rhône-Alpes is acknowledged for the partial funding through the IRICE project 3DFAB.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anne Desponds or Stephane Parola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desponds, A., Banyasz, A., Montagnac, G. et al. Microfabrication by two-photon lithography, and characterization, of SiO2/TiO2 based hybrid and ceramic microstructures. J Sol-Gel Sci Technol 95, 733–745 (2020). https://doi.org/10.1007/s10971-020-05355-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05355-3

Keywords

Navigation