Skip to main content
Log in

Investigation of Cs(I) uptake from aqueous solutions using new MIL-53/ANA composite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this paper, MIL-53/Analcime (MIL-53/ANA) composite were synthesized by hydrothermal method using Al3+ as metal site and carboxyl group of the ligand (terephthalic acid). The structural composition of the composite was analyzed by SEM, XRD, FTIR, EDS, TG and other characterization methods. The adsorption mechanism of MIL-53/ANA to cesium was discussed. The results showed The composite has good thermal stability, with a specific surface area of 198.13 m2/g and a pore volume of 0.216 cm3/g. The maximum adsorption capacity of Cs (I) was 173.52 mg/g. It conforms to the pseudo-second-order kinetic model and Freundlich isothermal adsorption model, and the chemical adsorption plays a dominant role in the overall Cs + adsorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Myasoedov BF, Kalmykov SN (2015) Nuclear power industry and the environment. Mendeleev Commun 25(5):319–328. https://doi.org/10.1016/j.mencom.2015.09.001

    Article  CAS  Google Scholar 

  2. Wu J (2018) Impacts of Fukushima Daiichi nuclear power plant accident on the Western North Pacific and the China seas: Evaluation based on field observation of (137)Cs. Mar Pollut Bull 127:45–53. https://doi.org/10.1016/j.marpolbul.2017.11.056

    Article  CAS  PubMed  Google Scholar 

  3. Cho J, Han SH (2021) Identification of risk-significant components in nuclear power plants to reduce Cs-137 radioactive risk. Reliab Eng Syst Saf 211:107613. https://doi.org/10.1016/j.ress.2021.107613

    Article  Google Scholar 

  4. Huang Q, Zou L-X, Lan P, Yang C, Jing Z-Y, Xu Y, Xu J (2019) Synthesis of the Y nanometer zeolites from fly ash and its adsorption models for aqueous Cs+ ions. J Radioanal Nucl Chem 323(1):65–72. https://doi.org/10.1007/s10967-019-06894-y

    Article  CAS  Google Scholar 

  5. Wang J, Zhuang S (2019) Removal of cesium ions from aqueous solutions using various separation technologies. Rev Environ Sci Bio/Technol 18(2):231–269. https://doi.org/10.1007/s11157-019-09499-9

    Article  CAS  Google Scholar 

  6. Ge Y-y, Tang Q, Cui X-m, He Y, Zhang J (2014) Preparation of large-sized analcime single crystals using the geopolymer-gels-conversion (GGC) method. Mater Lett 135:15–18. https://doi.org/10.1016/j.matlet.2014.07.122

    Article  CAS  Google Scholar 

  7. Long H, Wu P, Zhu N (2013) Evaluation of Cs+ removal from aqueous solution by adsorption on ethylamine-modified montmorillonite. Chem Eng J 225:237–244. https://doi.org/10.1016/j.cej.2013.03.088

    Article  CAS  Google Scholar 

  8. Zhang Z, Xu X, Yan Y (2010) Kinetic and thermodynamic analysis of selective adsorption of Cs(I) by a novel surface whisker-supported ion-imprinted polymer. Desalination 263(1–3):97–106. https://doi.org/10.1016/j.desal.2010.06.044

    Article  CAS  Google Scholar 

  9. Munthali MW, Johan E, Aono H, Matsue N (2018) Cs+ and Sr2+ adsorption selectivity of zeolites in relation to radioactive decontamination. J Asian Ceram Soc 3(3):245–250. https://doi.org/10.1016/j.jascer.2015.04.002

    Article  Google Scholar 

  10. Fukasawa T, Karisma AD, Shibata D, Huang A-N, Fukui K (2017) Synthesis of zeolite from coal fly ash by microwave hydrothermal treatment with pulverization process. Adv Powder Technol 28(3):798–804. https://doi.org/10.1016/j.apt.2016.12.006

    Article  CAS  Google Scholar 

  11. Ojumu TV, Du Plessis PW, Petrik LF (2016) Synthesis of zeolite A from coal fly ash using ultrasonic treatment–A replacement for fusion step. Ultrason Sonochem 31:342–349. https://doi.org/10.1016/j.ultsonch.2016.01.016

    Article  CAS  PubMed  Google Scholar 

  12. Samadi-Maybodi A, Naser Azizi S, Masoomeh Pourali S, Ehsani Tilami S (2012) Framework-substituted bismuth zeolite-P: synthesis and characterization. Z Anorg Allg Chem 638(1):214–219. https://doi.org/10.1002/zaac.201100335

    Article  CAS  Google Scholar 

  13. Seo S-M, Suh J-M, Ko S-O, Lim W-T (2011) Synthesis of single crystalline analcime and its single-crystal structure, |Na0.94(H2O)|[Si2.06Al0.94O6]-ANA: determination of cation sites, water positions, and Si/Al ratios. J Korean Chem Soc 55(4):570–574. https://doi.org/10.5012/jkcs.2011.55.4.570

    Article  CAS  Google Scholar 

  14. Simon A, Köhler J, Keller P, Weitkamp J, Buchholz A, Hunger M (2004) Phase transformation of zeolites Cs, Na–Y and Cs, Na–X impregnated with cesium hydroxide. Microporous Mesoporous Mater 68(1–3):143–150. https://doi.org/10.1016/j.micromeso.2003.12.019

    Article  CAS  Google Scholar 

  15. Wang WX, Qiao Y, Li T, Liu S, Zhou J, Yao H, Yang H, Xu M (2017) Improved removal of Cr(VI) from aqueous solution using zeolite synthesized from coal fly ash via mechano-chemical treatment. Asia-Pac J Chem Eng 12(2):259–267. https://doi.org/10.1002/apj.2069

    Article  CAS  Google Scholar 

  16. Khandaker S, Toyohara Y, Saha GC, Awual MR, Kuba T (2020) Development of synthetic zeolites from bio-slag for cesium adsorption: Kinetic, isotherm and thermodynamic studies. J Water Process Eng 33:101055. https://doi.org/10.1016/j.jwpe.2019.101055

    Article  Google Scholar 

  17. Bertram Böhringer RF, Martin R. Lohe, Marcus Rose, Stefan Kaskel, and Pia Küsgens MOF Shaping and Immobilization.

  18. Munn AS, Pillai RS, Biswas S, Stock N, Maurin G, Walton RI (2016) The flexibility of modified-linker MIL-53 materials. Dalton Trans 45(10):4162–4168. https://doi.org/10.1039/c5dt03438h

    Article  CAS  PubMed  Google Scholar 

  19. Stock N, Biswas S (2012) ChemInform abstract: synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. ChemInform. https://doi.org/10.1002/chin.201216255

    Article  Google Scholar 

  20. Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Ferey G (2004) A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chemistry 10(6):1373–1382. https://doi.org/10.1002/chem.200305413

    Article  CAS  PubMed  Google Scholar 

  21. Awual MR, Suzuki S, Taguchi T, Shiwaku H, Okamoto Y, Yaita T (2014) Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents. Chem Eng J 242:127–135. https://doi.org/10.1016/j.cej.2013.12.072

    Article  CAS  Google Scholar 

  22. Awual MR (2016) Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater. Chem Eng J 303:539–546. https://doi.org/10.1016/j.cej.2016.06.040

    Article  CAS  Google Scholar 

  23. Awual MR, Miyazaki Y, Taguchi T, Shiwaku H, Yaita T (2016) Encapsulation of cesium from contaminated water with highly selective facial organic–inorganic mesoporous hybrid adsorbent. Chem Eng J 291:128–137. https://doi.org/10.1016/j.cej.2016.01.109

    Article  CAS  Google Scholar 

  24. Awual MR, Yaita T, Kobayashi T, Shiwaku H, Suzuki S (2020) Improving cesium removal to clean-up the contaminated water using modified conjugate material. J Environ Chem Eng 8(2):103684. https://doi.org/10.1016/j.jece.2020.103684

    Article  CAS  Google Scholar 

  25. Hasan MN, Shenashen MA, Hasan MM, Znad H, Awual MR (2021) Assessing of cesium removal from wastewater using functionalized wood cellulosic adsorbent. Chemosphere 270:128668. https://doi.org/10.1016/j.chemosphere.2020.128668

    Article  CAS  PubMed  Google Scholar 

  26. Khandaker S, Chowdhury MF, Awual MR, Islam A, Kuba T (2021) Efficient cesium encapsulation from contaminated water by cellulosic biomass based activated wood charcoal. Chemosphere 262:127801. https://doi.org/10.1016/j.chemosphere.2020.127801

    Article  CAS  PubMed  Google Scholar 

  27. Liu R-y, Zou L-x, Huang Q, Cao X-h, ChuoYang (2021) Synthesis of analcime from fly ash and its adsorption of Cs+ in aqueous solution. J Radioanal Nucl Chem 329(1):103–113. https://doi.org/10.1007/s10967-021-07799-5

    Article  CAS  Google Scholar 

  28. Stephaniuk NT, Haskings EM, Arauzo A, Campo J, Rawson JM (2019) Inclusion and reactivity of main group radicals in the porous framework MIL-53(Al). Dalton Trans 48(43):16312–16321. https://doi.org/10.1039/c9dt03624e

    Article  CAS  PubMed  Google Scholar 

  29. Isaeva VI, Vedenyapina MD, Kulaishin SA, Lobova AA, Chernyshev VV, Kapustin GI, Tkachenko OP, Vergun VV, Arkhipov DA, Nissenbaum VD, Kustov LM (2019) Adsorption of 2,4-dichlorophenoxyacetic acid in an aqueous medium on nanoscale MIL-53(Al) type materials. Dalton Trans 48(40):15091–15104. https://doi.org/10.1039/c9dt03037a

    Article  CAS  PubMed  Google Scholar 

  30. Azizi SN, Ehsani Tilami S (2013) Framework-incorporated Mn and Co analcime zeolites: synthesis and characterization. J Solid State Chem 198:138–142. https://doi.org/10.1016/j.jssc.2012.10.001

    Article  CAS  Google Scholar 

  31. Awual MR, Yaita T, Taguchi T, Shiwaku H, Suzuki S, Okamoto Y (2014) Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent. J Hazard Mater 278:227–235. https://doi.org/10.1016/j.jhazmat.2014.06.011

    Article  CAS  PubMed  Google Scholar 

  32. Awual MR, Hasan MM, Iqbal J, Islam A, Islam MA, Asiri AM, Rahman MM (2020) Naked-eye lead(II) capturing from contaminated water using innovative large-pore facial composite materials. Microchem J 154:104585. https://doi.org/10.1016/j.microc.2019.104585

    Article  CAS  Google Scholar 

  33. Awual MR, Hasan MM, Iqbal J, Islam MA, Islam A, Khandaker S, Asiri AM, Rahman MM (2020) Ligand based sustainable composite material for sensitive nickel(II) capturing in aqueous media. J Environ Chem Eng 8(1):103591. https://doi.org/10.1016/j.jece.2019.103591

    Article  CAS  Google Scholar 

  34. Kapnisti M, Hatzidimitriou AG, Noli F, Pavlidou E (2014) Investigation of cesium uptake from aqueous solutions using new titanium phosphates ion-exchangers. J Radioanal Nucl Chem 302(1):679–688. https://doi.org/10.1007/s10967-014-3286-8

    Article  CAS  Google Scholar 

  35. Xia M, Zheng X, Du M, Wang Y, Ding A, Dou J (2018) The adsorption of Cs(+) from wastewater using lithium-modified montmorillonite caged in calcium alginate beads. Chemosphere 203:271–280. https://doi.org/10.1016/j.chemosphere.2018.03.129

    Article  CAS  PubMed  Google Scholar 

  36. Du Z, Jia M, Wang X (2012) Cesium removal from solution using PAN-based potassium nickel hexacyanoferrate (II) composite spheres. J Radioanal Nucl Chem 298(1):167–177. https://doi.org/10.1007/s10967-012-2396-4

    Article  CAS  Google Scholar 

  37. Liao H, Li Y, Li H, Li B, Zhou Y, Liu D, Wang X (2020) Efficiency and mechanism of amidoxime-modified X-type zeolite (AO-XZ) for Cs+ adsorption. Chem Phys Lett 741:137084. https://doi.org/10.1016/j.cplett.2019.137084

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (22166003) and the Open Foundation of the State Key Laboratory of Nuclear Resources and Environment (2020NRE32) of East China University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-xia Zou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Liu, Ry., Zou, Lx. et al. Investigation of Cs(I) uptake from aqueous solutions using new MIL-53/ANA composite. J Radioanal Nucl Chem 331, 523–533 (2022). https://doi.org/10.1007/s10967-021-08062-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08062-7

Keywords

Navigation