Skip to main content
Log in

Large scale production of 64Cu and 67Cu via the 64Zn(n, p)64Cu and 68Zn(n, np/d)67Cu reactions using accelerator neutrons

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Both 64Cu and 67Cu are promising radionuclides in nuclear medicine. Production yields of these radionuclides were quantified by irradiating 55.4 g of natural zinc with accelerator neutrons. Clinically suitable 64Cu and 67Cu yields were estimated by experimental based numerical simulations using 100 g of enriched 64Zn and 68Zn, respectively, and elevated neutron fluxes from 40 MeV, 2 mA deuterons. A combined thermal- and resin-separation method was developed to isolate 64Cu and 67Cu from zinc, resulting in 73% separation efficiency and 97% zinc recovery. Such methods can provide large scale production of 64Cu and 67Cu for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bé M-M, Chisté V, Dulieu C, Mougeot X, Chechev VP, Kuzmenko NK, Kondev FG, Luca A, Galán M, Nichols AL, Arinc A, Pearce A, Huang X. Wang B (2011) Table of Radionuclides (Vol. 6 - A = 22 to 242). Monographie BIPM-5, vol.6., Bureau International des Poids et Mesures

  2. National Nuclear Data Center, information extracted from the NuDat 2 database, https://www.nndc.bnl.gov/nudat2/

  3. Jalilian A, Osso J Jr (2017) The current status and future of theranostic copper-64 radiopharmaceuticals. Iran J Nucl Med 25:1–10

    CAS  Google Scholar 

  4. Anderson CJ, Ferdani R (2009) Copper-64 Radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother Radio 24:379–392

    CAS  Google Scholar 

  5. Wadas TJ, Wong EH, Weisman GR, Anderson CJ (2007) Copper chelation chemistry and its role in copper radiopharmaceuticals. Curr Pharm Des 13:3–16

    Article  CAS  Google Scholar 

  6. Srivastava SC (2011) Paving the way to personalized medicine: production of some theragnostic radionuclides at Brookhaven National Laboratory. Radiochim Acta 99:635640

    Article  Google Scholar 

  7. Smith NA, Bowers DL, Ehst DA (2012) The production, separation, and use of 67Cu for radioimmunotherapy: a review. Appl Radiat Isot 70:2377–2383

    Article  CAS  Google Scholar 

  8. Novak-Hofer I, Schubiger A (2002) Copper-67 as a therapeutic nuclide for radioimmunotherapy. Eur J Nucl Med Mol Imaging 29:821–830

    Article  CAS  Google Scholar 

  9. Qaim SM (2019) Theranostic radionuclides: recent advances in production methodologies. J Radioanal Nucl Chem 322:1257–1266

    Article  CAS  Google Scholar 

  10. Keinänen O, Fung K, Brennan JM, Zia N, Harris M, van Dam E, Biggin C, Hedt A, Stoner J, Donnelly PS, Lewis JS, Zeglis BM (2020) Harnessing 64Cu/67Cu for a theranostic approach to pretargeted radioimmunotherapy. In: Proceedings of the National Academy of Sciences. 117(45):28316–28327

  11. Duncan C, White AR (2012) Copper complexes as therapeutic agents. Metallomics 4:127–138

    Article  CAS  Google Scholar 

  12. Zinn KR, Chaudhuri TR, Cheng TP, Morris JS, Meyer WA (1994) Production of no-carrier-added 64Cu from zinc metal irradiated under boron shielding. Cancer 73(3 Suppl):774–778

    Article  Google Scholar 

  13. Johnsen AM, Heidrich BJ, Durrant CB, Bascom AJ, Kenan, Uenlue (2015) Reactor production of 64Cu and 67Cu using enriched zinc target material. J Radioanal Nucl Chem 305:61–71

    Article  CAS  Google Scholar 

  14. Jeffery CM, Smith SV, Asad AH, Chan S, Price RI (2012) Routine production of copper-64 using 11.7 MeV Protons. 14th International Workshop on Targetry and Target Chemistry. In: AIP Conf. Proc. 1509, 84–90

  15. Avila-Rodriguez MA, Nye JA, Nickles RJ (2007) Simultaneous production of high specific activity 64Cu and 61Co with 11.4 MeV protons on enriched 64Ni nuclei. App Radiat Isot 65:1115–1120

    Article  CAS  Google Scholar 

  16. McCarthy DW, Shefer RE, Klinkowstein RE, Bass LA, Margeneau WH, Cutler CS, Anderson CJ, Welch MJ (1997) Efficient production of high specific activity. 64Cu using a biomedical cyclotron. Nucl Med Boils 24:35–43

    Article  CAS  Google Scholar 

  17. Hermanne A, Tárkányi F, Takács S, Kovalev SF, Ignatyuk A (2007) Activation cross sections of the 64Ni(d,2n) reaction for the production of the medical radionuclide 64Cu. Nucl Instrum Methods B 258(2):308–312

    Article  CAS  Google Scholar 

  18. Kozempel J, Abbas K, Simonelli F, Holzwarth U, Gibson N, Zampese M, Leseticky L (2007) A novel method for nca 64Cu production by the 64Zn(d, 2p)64Cu reaction and dual ion-exchange column chromatography. Radiochim Acta 95:75–80

    Article  CAS  Google Scholar 

  19. Szelecsényi F, Steyn GF, Kovács Z, Vermeulen C, van der Meulen NP, Dolley SG, van der Walt TN, Suzuki K, Mukai K (2005) Investigation of the 66Zn(p,2pn)64Cu and 68Zn(p,x)64Cu nuclear processes up to 100 MeV: Production of 64Cu. Nucl Instrum Methods B 240 3:625–637

    Article  Google Scholar 

  20. Hilgers K, Stoll T, Skakun Y, Coenen HH, Qaim SM (2003) Cross-section measurements of the nuclear reactions natZn(d,x)64Cu, 66Zn(d,α)64Cu and 68Zn(p,αn)64Cu for production of 64Cu and technical developments for small-scale production of 67Cu via the 70Zn(p,α)67Cu process. App Radiat Isot 59:343–351

    Article  CAS  Google Scholar 

  21. Spahn I, Coenen HH, Qaim SM (2004) Enhanced production possibility of the therapeutic radionuclides 64Cu, 67Cu and 89Sr via (n,p) reactions induced by fast spectral neutrons. Radiochim Acta 92:183–186

    Article  CAS  Google Scholar 

  22. Mirzadeh S, Mausner LF, Srivastava SC (1986) Production of no-carrier-added 67Cu. Appl Radiat Isot 37:29–36

    Article  CAS  Google Scholar 

  23. Medvedev DG, Mausner LF, Meinken GE, Kurczak SO, Schnakenberg H, Dodge CJ, Korach EM, Srivastava SC (2012) Development of a large scale production of 67Cu from 68Zn at the high energy proton accelerator: closing the 68Zn cycle. Appl Radiat Isot 70:423–429

    Article  CAS  Google Scholar 

  24. Marceau N, Kruck TPA, McConnell DB, Aspin N (1970) The production of 67Cu from natural zinc using a linear accelerator. Int J Appl Radiat Isot 21:667–66923

    Article  CAS  Google Scholar 

  25. Rotsch DA, Alford K, Bailey JL, Bowers DL, Brossard T, Brown MA, Chemerisov S, Ehst D, Greene JP, Gromov R, Grudzinski JJ, Hafenrichter L, Hebden AS, Heltemes TA, Henning WF, Jerden J, Jonah CD, Kalensky M, Krebs JF, Makarashvili V, Micklich BJ, Nolen JA, Quigley KJ, Schneider JF, Smith NA, Stepinski DC, Tkac P, Vandegrift GF, Virgo M, Wesolowski KA, Youker AJ (2016) Production of Medical Isotopes With Electron Linacs. In: Proc. North American Particle Accelerator Conf. (NAPAC’16), Chicago, IL, USA. paper THB2IO02: 1091–1095

  26. Stoner J, Gardner T (2016) Production of copper-68 from and enriched zinc-68 target. US Patent 2016/0040267A1

  27. Kozempel J, Abbas K, Simonelli F, Bulgheroni A, Holzwarth U, Gibson P (2012) Preparation of 67Cu via deuteron irradiation of 70Zn. Radiochimica Acta 100:419–423

    Article  CAS  Google Scholar 

  28. Kin T, Nagai Y, Iwamoto N, Minato F, Iwamoto O, Hatsukawa Y, Segawa M, Harada H, Konno C, Ochiai K, Takakura K (2013) New production routes for medical isotopes 64Cu and 67Cu using accelerator neutrons. J Phys Soc Jpn 82:034201

    Article  Google Scholar 

  29. Nagai Y, Hashimoto K, Hatsukawa Y, Saeki H, Motoishi S, Sato N, Kawabata M, Harada H, Kin T, Tsukada K, Sato TK, Minato F, Iwamoto O, Iwamoto N, Seki Y, Yokoyama K, Shiina T, Ohta A, Takeuchi N, Kawauchi Y, Sato N, Yamabayashi H, Adachi Y, Kikuchi Y, Mitsumoto T, Igarashi T (2013) Generation of radioisotopes with accelerator neutrons by deuterons. J Phys Soc Jpn 82:064201

    Article  Google Scholar 

  30. Sato N, Tsukada K, Watanabe S, Ishioka NS, Kawabata M, Saeki H, Nagai Y, Kin T, Minato F, Iwamoto N, Iwamoto O (2014) First measurement of the radionuclide purity of the therapeutic isotope 67Cu produced by 68Zn(n, x) reaction using natC(d, n) neutrons. J Phys Soc Jpn 83:073201

    Article  Google Scholar 

  31. Kawabata M, Hashimoto K, Saeki H, Sato N, Motoishi S, Takakura K, Konno C, Nagai Y (2015) Production and separation of 64Cu and 67Cu using 14 MeV neutrons. J Radioanal Nucl Chem 303:1205–1209

    Article  CAS  Google Scholar 

  32. Schwarzbach R, Zimmermann K, Bläuenstein P, Smith A, Schubiger PA (1995) Development of a simple and selective separation of 67Cu from irradiated zinc for use in antibody labelling: a comparison of methods. Appl Radiat Isot 46:329–336

    Article  CAS  Google Scholar 

  33. Rosman KJR (1972) A survey of the isotopic and elemental abundance of zinc. Geochim Cosmochim Acta 36:801–819

    Article  CAS  Google Scholar 

  34. Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, Zucker DS, Olsen K (2010), XCOM: Photon Cross Section Database (version 1.5). [Online]Available: http://physics.nist.gov/xcom [1 May 2021]. National Institute of Standards and Technology, Gaithersburg, MD

  35. Anderegg G, Arnaud-Neu F, Delgado R, Felcman J, Popov K (2005) Critical evaluation of stability constants of metal complexes of complexones for biomedical and environmental applications. Pure Appl Chem 77:1445–1495

    Article  CAS  Google Scholar 

  36. Asad AH, Smith SV, Morandeau LM, Chan S, Jeffery CM, Price RI (2016) Production of 61Cu by the natZn(p,α) reaction: improved separation and specific activity determination by titration with three chelators. J Radioanal Nucl Chem 307:899–906

    Article  CAS  Google Scholar 

  37. Sun X. Wuest M. Kovacs Z, Sherry AD, Motekaitis R, Wang Z, Martell AE, Welch MJ, Anderson CJ (2003) In vivo behavior of copper-64-labeled methanephosphonate tetraaza macrocyclic ligands. J Biol Inorg Chem 8:217–225

    Article  CAS  Google Scholar 

  38. Jones-Wilson TM, Deal KA, Anderson CJ, McCarthy DW, Kovacs Z, Motekaitis RJ, Sherry AD, Martell AE, Welch MJ (1998) The in vivo behaviour of copper-64-labeled azamacrocyclic Complexes. Nucl Med Biol 25:523–530

    Article  CAS  Google Scholar 

  39. Tsukada K, Nagai Y, Hashimoto S, Minato F, Kawabata M, Hatsukawa Y, Hashimoto K, Watanabe S, Saeki H, Motoishi S (2020) Anomalous Radioisotope Production for 68ZnO Using Polyethylene by Accelerator Neutrons. J Phys Soc Jpn 89:034201

    Article  Google Scholar 

  40. Sato T, Iwamoto Y, Hashimoto S, Ogawa T, Furuta T, Abe S, Kai T, Tsai P, Matsuda N, Iwase H, Shigyo N, Sihver L, Niita K (2018) Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02. J Nucl Sci Technol 55:684

    Article  CAS  Google Scholar 

  41. Saltmarsh MJ, Ludemann CA, Fulmer CA, Styles RC (1977) Characteristics of an intense neutron source based on the d + Be reaction. Nucl Instr Meth 145:81–90

    Article  CAS  Google Scholar 

  42. Kunieda S, Iwamoto O, Iwamoto N, Minato F, Okamoto T, Sato T, Nakashima H, Iwamoto Y, Iwamoto H, Kitatani F, Fukahori T, Watanabe Y, Shigyo N, Chiba S, Yamano N, Hagiwara M, Niita K, Kosako K, Hirayama S, Murata T (2016) Overview of JENDL-4.0/HE and benchmark calculations, JAEA-Conf. 2016-004, p. 41.28

  43. Minato F, Tsukada K, Sato N, Watanabe S, Saeki H, Kawabata M, Hashimoto S, Nagai N (2017) Measurement and Estimation of the 99Mo Production Yield by 100Mo(n,2n)99Mo. J Phys Soc Jpn 86:114803

    Article  Google Scholar 

  44. Dolegieviez P, Ferdinand R, Ledoux H, Savajols H, Varenne F (2019) Status of the SPIRAL2 project, in Proc. 10th Int. Particle Accelerator Conf. (IPAC’19), Melbourne, Australia. 844–847

  45. Lhersonneau G, Malkiewicz T, Kolos K, Fadil M, Kettunen H, Saint-Laurent MG, Pichard A, Trzaska WH, Tyurin G, Cousin L (2009) Neutron yield from carbon, light- and heavy-water thick targets irradiated by 40 MeV deuterons. Nucl Instr Meth B 603:228–235

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Cyclotron and Radioisotope Center (CYRIC) at Tohoku University for the accelerator operation. The authors gratefully acknowledge insightful comments made by the reviewers that helped to improve the quality of the manuscript.

Funding

The 64, 67Cu and 65Zn was supplied through Supply Platform of Short-lived Radioisotopes, supported by JSPS Grant-in-Aid for Scientific Research on Innovative Areas, Grant Number 16H06278. This work was supported by JSPS KAKENHI Grant Number 16K10374, 16K05383 and 19K03903.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masako Kawabata.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawabata, M., Motoishi, S., Ohta, A. et al. Large scale production of 64Cu and 67Cu via the 64Zn(n, p)64Cu and 68Zn(n, np/d)67Cu reactions using accelerator neutrons. J Radioanal Nucl Chem 330, 913–922 (2021). https://doi.org/10.1007/s10967-021-07987-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07987-3

Keywords

Navigation