Skip to main content

Advertisement

Log in

Tailoring molecular structure in the active layer of thin-film composite membrane for extreme pH condition

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of thin-film composite membranes with polyurea as the active layer were fabricated by interfacial polymerization of different multi-amine and 1,4-phenylene diisocyanate (PDI) on porous poly(ether sulfone) support. By XPS and SEM analysis, polyethylenepolyamine (PP) was confirmed to be more suitable to react with PDI to form denser and thinner polyurea-based active layer. The best-optimized sample was obtained by varying PP and PDI content during interfacial polymerization process, exhibiting a MgSO4 rejection of 99.0%, with a water flux of 15.4 L m−2 h−1 at 2.0 MPa. The acid/alkali-tolerant property of the best-optimized membrane was investigated by both static acid/alkali soaking tests and long-term permeation tests under extremely acidic or alkaline condition. It should be noted that the optimal membrane fabricated by PP can still retain a MgSO4 rejection higher than 93.0% at neural pH testing condition, after exposure to extreme pH condition for 1 year, and the pH stability of the membrane can be comparable to that of the commercial MPS-34 membrane produced by Koch industries. On the other hand, during long-term permeation tests, the optimal membrane fabricated by PP showed stable Na2SO4 rejection higher than 90%, with higher than 90% permeability for H2SO4, implying potential application in the separation of the acid from metal salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tang CY, Yang Z, Guo H, Wen JJ, Nghiem LD, Cornelissen E (2018) Potable water reuse through advanced membrane technology. Environ Sci Technol 52:10215–10223

    Article  CAS  PubMed  Google Scholar 

  2. Werber JR, Osuji CO, Elimelech M (2016) Materials for next-generation desalination and water purification membranes. Nat Rev Mater 1:1–16

    Article  CAS  Google Scholar 

  3. Belleville MP, Sanchez-Marcano J, Bargeman G, Timmer M (2021) Nanofiltration in the food industry. Nanofiltration: Principles Applications, and New Materials 2:499–542

    Article  Google Scholar 

  4. Bessarabov D, Twardowski Z (2002) Industrial application of nanofiltration – new perspectives. Membr Technol 9:6–9

    Google Scholar 

  5. Pérez-González A, Ibáñez R, Gómez P, Urtiaga AM, Ortiz I, Irabien JA (2015) Nanofiltration separation of polyvalent and monovalent anions in desalination brines. J Membr Sci 473:16–27

    Article  CAS  Google Scholar 

  6. Tan Z, Chen S, Peng X, Zhang L, Gao C (2018) Polyamide membranes with nanoscale Turing structures for water purification. Science 360:518–521

    Article  CAS  PubMed  Google Scholar 

  7. Zhang L, Zhang R, Ji M, Lu Y, Zhu Y, Jin J (2021) Polyamide nanofiltration membrane with high mono/divalent salt selectivity via pre-diffusion interfacial polymerization. J Membr Sci 636:119478

    Article  CAS  Google Scholar 

  8. Jun B-M, Kim SH, Kwak SK, Kwon Y-N (2018) Effect of acidic aqueous solution on chemical and physical properties of polyamide NF membranes. Appl Surf Sci 444:387–398

    Article  CAS  Google Scholar 

  9. Yun T, Chung JW, Kwak SY (2018) Recovery of sulfuric acid aqueous solution from copper-refining sulfuric acid wastewater using nanofiltration membrane process. J Environ Manag 223:652–657

    Article  CAS  Google Scholar 

  10. Chang FF, Liu WJ, Wang XM (2014) Comparison of polyamide nanofiltration and low-pressure reverse osmosis membranes on As(III) rejection under various operational conditions. Desalination 334:10–16

    Article  CAS  Google Scholar 

  11. González MP, Navarro R, Saucedo I, Avila M, Revilla J, Bouchard C (2002) Purification of phosphoric acid solutions by reverse osmosis and nanofiltration. Desalination 147:315–320

    Article  Google Scholar 

  12. Niewersch C, Koh CN, Wintgens T, Melin T, Schaum C, Cornel P (2008) Potentials of using nanofiltration to recover phosphorus from sewage sludge. Water Sci Technol 57:704–714

    Article  CAS  Google Scholar 

  13. Visser TJK, Modise SJ, Krieg HM, Keizer K (2001) The removal of acid sulphate pollution by nanofiltration. Desalination 140:79–86

    Article  CAS  Google Scholar 

  14. LÓpez J, Reig M, Gibert O, Cortina JL (2019) Integration of nanofiltration membranes in recovery options of rare earth elements from acidic mine waters. J Cleaner Prod 210:1249–1260

    Article  CAS  Google Scholar 

  15. Chai YK, Lam HC, Koo CH, Lau WJ, Lai SO, Ismail AF (2019) Performance evaluation of polyamide nanofiltration membranes for phosphorus removal process and their stability against strong acid/alkali solution. Chin J Chem Eng 27(8):1789–1797

    Article  CAS  Google Scholar 

  16. Gönder ZB, Arayici S, Barlas H (2011) Advanced treatment of pulp and paper mill wastewater by nanofiltration process: effects of operating conditions on membrane fouling. Sep Purif Technol 76:292–302

    Article  CAS  Google Scholar 

  17. Schlesinger R, Götzinger G, Sixta H, Friedl A, Harasek M (2006) Evaluation of alkali resistant nanofiltration membranes for the separation of hemicellulose from concentrated alkaline process liquors. Desalination 192:303–314

    Article  CAS  Google Scholar 

  18. Bargeman G, Steensma M, ten Kate A, Westerink JB, Demmer RLM, Bakkenes H, Manuhutu CFH (2009) Nanofiltration as energy-efficient solution for sulfate waste in vacuum salt production. Desalination 245:460–468

    Article  CAS  Google Scholar 

  19. Kaya Y, Barlas H, Arayici S (2009) Nanofiltration of Cleaning-in-Place (CIP) wastewater in a detergent plant: effects of pH, temperature and transmembrane pressure on flux behavior. Sep Purif Technol 65:117–129

    Article  CAS  Google Scholar 

  20. Ince M, Senturk E, Onkal Engin G, Keskinler B (2010) Further treatment of landfill leachate by nanofiltration and microfiltration—PAC hybrid process. Desalination 255:52–60

    Article  CAS  Google Scholar 

  21. Boussu K, Van der Bruggen B, Volodin A, Van Haesendonck C, Delcour JA, Van der Meeren P, Vandecasteele C (2006) Characterization of commercial nanofiltration membranes and comparison with self-made polyethersulfone membranes. Desalination 191:245–253

    Article  CAS  Google Scholar 

  22. Good K, Escobar I, Xu X, Coleman M, Ponting M (2002) Modification of commercial water treatment membranes by ion beam irradiation. Desalination 146:259–264

    Article  CAS  Google Scholar 

  23. Kurth CJ (2006) Acid stable membranes for nanofiltration. US. Patent 7,138,058

  24. Perry M (2018) Solvent and acid stable membranes, methods of manufacture thereof and methods of use thereof inter alia for separating metal ions from liquid process streams. US. Patent 9,943,811

  25. Han R (2013) Formation and characterization of (melamine–TMC) based thin film composite NF membranes for improved thermal and chlorine resistances. J Membr Sci 425–426:176–181

    Article  CAS  Google Scholar 

  26. Freger V, Bottino A, Capannelli G, Perry M, Gitis V, Belfer S (2005) Characterization of novel acid-stable NF membranes before and after exposure to acid using ATR–FTIR, TEM and AFM. J Membr Sci 256:134–142

    CAS  Google Scholar 

  27. Bargeman G (2021) Recent developments in the preparation of improved nanofiltration membranes for extreme pH conditions. Sep Purif Tech 279:119725

    Article  CAS  Google Scholar 

  28. Dalwani M, Bargeman G, Hosseiny SS, Boerrigter M, Wessling M, Benes NE (2011) Sulfonated poly(ether ether ketone) based composite membranes for nanofiltration of acidic and alkaline media. J Membr Sci 381:81–89

    Article  CAS  Google Scholar 

  29. Zhang Y, Guo M, Pan G, Yan H, Xu J, Shi Y, Shi H, Liu Y (2015) Preparation and properties of novel pH-stable TFC membrane based on organic–inorganic hybrid composite materials for nanofiltration. J Membr Sci 476:500–507

    Article  CAS  Google Scholar 

  30. Zhang Y, Guo M, Yan H, Pan G, Xu J, Shi Y, Liu Y (2014) Novel organic-inorganic hybrid composite membranes for nanofiltration of acid and alkaline media. RSC Adv 4:57522–57528

    Article  CAS  Google Scholar 

  31. Paltrinieri L, Remmen K, Müller B, Chu L, Köser J, Wintgens T, Wessling M, de Smet LCPM, Sudhölter EJR (2019) Improved phosphoric acid recovery from sewage sludge ash using layer-by-layer modified membranes. J Membr Sci 587:117162

    Article  CAS  Google Scholar 

  32. Joseph N, Ahmadiannamini P, Hoogenboom R, Vankelecom IF (2014) Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation. Polym Chem 5(6):1817–1831

    Article  CAS  Google Scholar 

  33. Remmen K, Müller B, Köser J, Wessling M, Wintgens T (2020) Assessment of layer by-layer modified nanofiltration membrane stability in phosphoric acid. Membranes 10:61–76

    Article  CAS  PubMed Central  Google Scholar 

  34. Menne D, Üzüm C, Koppelmann A, Wong JE, van Foeken C, Borre F, Dähne L, Laakso T, Pihlajamäki A, Wessling M (2016) Regenerable polymer/ceramic hybrid nanofiltration membrane based on polyelectrolyte assembly by layer-by layer technique. J Membr Sci 520:924–932

    Article  CAS  Google Scholar 

  35. Goethem CV, Mertens M, Vankelecom IFJ (2019) Crosslinked PVDF membranes for aqueous and extreme pH nanofiltration. J Membr Sci 572:489–495

    Article  CAS  Google Scholar 

  36. Valtcheva IB, Kumbharkar SC, Kim JF, Bhole Y, Linvingston AG (2014) Beyond polyimide: crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments. J Membr Sci 457:62–72

    Article  CAS  Google Scholar 

  37. Lee KP, Zheng J, Bargeman G, Kemperman AJB, Benes NE (2015) pH stable thin film composite polyamine nanofiltration membrane by interfacial polymerization. J Membr Sci 478:75–84

    Article  CAS  Google Scholar 

  38. Lee KP, Bargeman G, Rooij R, Kemperman AJB, Benes NE (2017) Interfacial polymerization of cyanuric chloride and monomeric amines: pH resistant thin film composite polyamine nanofiltration membranes. J Membr Sci 523:487–496

    Article  CAS  Google Scholar 

  39. Lasisi KH, Zhang K (2021) Polyamine-based thin-film composite nanofiltration membrane embedded with catalytic chemical additive for enhanced separation performance and acid stability. J Membr Sci 644:120155

    Article  CAS  Google Scholar 

  40. Lasisi KH, Yao W, Xue Q, Liu Q, Zhang K (2021) High performance polyamine-based acid-resistant nanofiltration membranes catalyzed with 1,4-benzenecarboxylic acid in interfacial cross-linking polymerization process. J Membr Sci 640:119833

    Article  CAS  Google Scholar 

  41. Soulier JP, Chabert B, Chauchard J, Berticat P, May JF (1974) Synthesis and properties of some polyamides and polysulfonamides. J Appl Polym Sci 18:2435–2447

    Article  CAS  Google Scholar 

  42. Cui K, Li P, Zhang R, Cao B (2020) Preparation of pervaporation membranes by interfacial polymerization for acid wastewater purification. Chem Eng Res Des 156:171–179

    Article  CAS  Google Scholar 

  43. Eslami AB, Peyravi M, Jahanshahi M, Hosseinpour H (2020) Polysulfonamide coating layer polymerized by 1,3-disulfonyl chloride and polyethylenimine to achieve acid resistant TFC membranes. Chem Eng Res Des 155:172–179

    Article  CAS  Google Scholar 

  44. Hoseinpour H, Peyravi M, Nozad A, Jahanshahi M (2016) Static and dynamic assessments of polysulfonamide and poly(amide-sulfonamide) acid-stable membranes. J Taiwan Inst Chem E 67:453–466

    Article  CAS  Google Scholar 

  45. Liu M, Yao G, Cheng Q, Ma M, Yu S, Gao C (2012) Acid stable thin-film composite membrane for nanofiltration prepared from naphthalene-1,3,6-trisulfonylchloride (NTSC) and piperazine (PIP). J Membr Sci 415–416:122–131

    Article  CAS  Google Scholar 

  46. Li T, Zhang C, Xie Z, Xu J, Guo BH (2018) A multi-scale investigation on effects of hydrogen bonding on micro-structure and macro-properties in a polyureaPolymer 145:261–271

    CAS  Google Scholar 

  47. Wei H, Tong L, Yu S, Zhang J, Dong Y, Li X, Ding Y (2019) Non-covalently crosslinked anion exchange membranes: effect of urea hydrogen-bonding group position. Polymer 179:121654

    Article  CAS  Google Scholar 

  48. Park HM, Ismael M, Takaba H, Lee YT (2022) Acid-resistant thin-film composite nanofiltration membrane prepared from polyamide-polyurea and the behavior of density functional theory study. J Membr Sci 645:120175

    Article  CAS  Google Scholar 

  49. Cao Y, Wan Y, Chen C, Luo J (2021) A novel acid resistant thin-film composite nanofiltration membrane with polyurea enhanced dually charged separation layer. J Membr Sci 1:100002

    Google Scholar 

  50. Zhang Y, Wan Y, Li Y, Pan G, Yu H, Du W, Shi H, Wu C, Liu Y (2021) Thin-film composite nanofiltration membrane based on polyurea for extreme pH condition. J Membr Sci 636:119472

    Article  CAS  Google Scholar 

  51. Zhang Y, Wan Y, Pan G, Wei X, Li Y, Shi H, Liu Y (2019) Preparation of high performance polyamide membrane by surface modification method for desalination. J Membr Sci 573:11–20

    Article  CAS  Google Scholar 

  52. Tang CY, Kwon YN, Leckie JO (2009) Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I.FTIR and XPS characterization of polyamide and coating layer chemistry. Desalination 242:149–167

    Article  CAS  Google Scholar 

  53. Freger V (2005) Kinetics of film formation by interfacial polycondensation. Langmuim 21:1884

    Article  CAS  Google Scholar 

  54. He Y, Zhang X, Runt J (2014) The role of dissocyanate structure on microphase separation of solution polymerized polyureas. Polymer 55:906–913

    Article  CAS  Google Scholar 

  55. Garrett JT, Xu R, Cho J, Runt J (2003) Phase separation of diamine chain-extended poly(urethane) copolymers: FTIR spectroscopy and phase transitions. Polymer 44:2711–2719

    Article  CAS  Google Scholar 

  56. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    Article  CAS  Google Scholar 

  57. Li X, Wang Z, Han XL, Liu YY, Wang C, Yan FZ, Wang JX (2021) Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: a review. J Membr Sci 640:119765

    Article  CAS  Google Scholar 

  58. Tanninen J, Mänttaäri M, Nyström M (2006) Nanofiltration of concentrated acidic copper sulfate solutions. Desalination 189:92–96

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge SINOPEC for the financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Zhang or Changjiang Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Guo, Y., Wan, Y. et al. Tailoring molecular structure in the active layer of thin-film composite membrane for extreme pH condition. J Polym Res 29, 308 (2022). https://doi.org/10.1007/s10965-022-03155-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03155-7

Keywords

Navigation