Skip to main content
Log in

Poly(hydroxyamide) as support for thin-film composite membranes for water treatment

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Preparation of a porous support for a thin-film composite (TFC) membrane was achieved based on a highly aromatic poly(hydroxyamide) (PHA) formed from 5-hydroxyisophthalic acid and 4,4′-(hexafluoroisopropylidene)dianiline. PHA synthesis was confirmed by Fourier transform infrared and proton nuclear magnetic resonance (1H NMR) spectroscopies. PHA was soluble in N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), and tetrahydrofuran (THF) with Mw 6.1 × 104 Da. Moreover, PHA showed good thermal stability up to 390 °C. Parameters for an appropriated PHA porous structure support membrane by the phase-inversion method were determined. Porous PHA support offers higher thermal stability and better adhesion between support amide thin skin layer than the ones used actually. Water permeation flux was 543 L m−2 h−1 for PHA porous support, whereas thin-film composite membrane PHA-TFC formed presented a decrease in water permeation flux (2.5 L m−2 h−1) and a salt rejection capacity of 29% which situates it as a nanofiltration membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Le NL, Nunez SP (2016) Materials and membrane technologies for water and energy sustainability. Sustain Mater Technol 7:1–28

    CAS  Google Scholar 

  2. Goh PS, Matsuura T, Ismail AF, Hilal N (2016) Recent trends in membranes and membrane processes for desalination. Desalination 391:43–60

    Article  CAS  Google Scholar 

  3. Lee A, Elam JW, Darling SB (2016) Membrane materials for water purification: design, development, and application. Environ Sci Water Res Technol 2:17–42

    Article  CAS  Google Scholar 

  4. Geise GM, Paul DR, Freeman BD (2014) Fundamental water and salt transport properties of polymeric materials. Prog Polym Sci 39:1–42

    Article  CAS  Google Scholar 

  5. Hosseini SS, Bringas E, Tan NR, Ortiz I, Ghahramani M, Shahmirzadi MAA (2016) Recent progress in development of high performance polymeric membranes and materials for metal plating wastewater treatment: a review. J Water Process Eng 9:78–110

    Article  Google Scholar 

  6. Paul M, Jons SD (2016) Chemistry and fabrication of polymeric nanofiltration membranes: a review. Polymer 103:417–456

    Article  CAS  Google Scholar 

  7. Ismail AF, Padaki M, Hilal N, Matsuura T, Lau WJ (2015) Thin film composite membranes-recent development and future potential. Desalination 356:140–148

    Article  CAS  Google Scholar 

  8. Zeng Y, Wang L, Zhang L, Yu JQ (2018) An acid resistant nanofiltration membrane prepared from a precursor of poly(s-triazine-amine) by interfacial polymerization. J Membr Sci 546:225–233

    Article  CAS  Google Scholar 

  9. Zhang R, Yu S, Shi W, Wang W, Wang X, Zhang Z, Li L, Zhang B, Bao X (2017) A novel polyesteramide thin film composite nanofiltration membrane prepared by interfacial polymerization of serinol and trimesoyl chloride (TMS) catalyzed by 4-dimethylaminopyridine. J Membr Sci 542:68–80

    Article  CAS  Google Scholar 

  10. Xie W, Geise GM, Freeman BD, Lee H-S, Byun G, McGrath JM (2012) Polyamide interfacial composite membranes prepared from m-phenylene diamina, trimesoyl chloride and a new disulfonated diamine. J Membr Sci 403–404:152–161

    Article  CAS  Google Scholar 

  11. Yakavalangi ME, Rimaz S, Vatanpour V (2017) Effect of surface properties of polysulfone support on the performance of thin film composite polyamide reverse osmosis membranes. J Appl Polym Sci 134:44444

    Google Scholar 

  12. Ren J, O´Grady B, de Jesus G, McCutcheon JR (2016) Sulfonated polysulfone supported high performance thin film composite membranes for forward osmosis. Polymer 103:486–497

    Article  CAS  Google Scholar 

  13. Khorshidi B, Thundat T, Fleck BA, Sadrzadeh M (2016) A novel approach toward fabrication of high performance thin film composite polyamide membranes. Sci Rep 6:22069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou C, Shi Y, Sun C, Yu S, Liu M, Gao C (2014) Thin film composite membranes formed by interfacial polymerization with natural material sericin and trimesoyl chloride for nanofiltration. J Membr Sci 471:381–391

    Article  CAS  Google Scholar 

  15. Li Y, Su Y, Li J, Zhao X, Zahng R, Fan X, Zhu J, Ma Y, Liu Y, Jian Z (2015) Preparation of thin film composite nanofiltration membrane with improved structural stability thorough the mediation of polydopamine. J Membr Sci 476:10–19

    Article  CAS  Google Scholar 

  16. Alsvik IL, Hägg M-B (2013) Preparation of thin film composite membranes with polyamide film on hydrophilic supports. J Membr Sci 428:225–231

    Article  CAS  Google Scholar 

  17. Yang S, Zhen H, Su B (2017) Polyamide thin film composite (TFC) membranes via interfacial polymerization on hydrolyzed polyacrylonitrile support for solvent resistant nanofiltration. RSC Adv 7:42800–42810

    Article  CAS  Google Scholar 

  18. Bui N-N, McCutcheon JR (2013) Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis. Environ Sci Technol 47:1761–1769

    Article  CAS  PubMed  Google Scholar 

  19. Yamazaki N, Matsumoto M, Higashi F (1975) Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J Polym Sci Polym Chem Ed 13:1373–1380

    Article  CAS  Google Scholar 

  20. Boom RM, van den Boomgaard T, van den Verg JWA, Smolders CA (1993) Linearized cloudpoint curve correlation for ternary systems consisting of one polymer, one solvent and one non-solvent. Polymer 34:2348–2356

    Article  CAS  Google Scholar 

  21. Yam-Cervantes MA, Santiago-García JL, Loría-Bastarrachea MI, Duarte-Aranda S, Ruiz-Treviño FA, Aguilar-Vega M (2017) Sulfonated polyphenylsulfone asymmetric membranes: effect of coagulation bath (acetic acid-NaHCO3/isopropanol) on morphology and antifouling properties. J Appl Polym Sci 134:44502

    Article  CAS  Google Scholar 

  22. Rajesh S, Shobana KH, Aitharaj S, Mohan DR (2011) Preparation, morphology, performance, and hydrophilicity studies of poly(amide-imide) incorporated cellulose acetate ultrafiltration membranes. Ind Eng Chem Res 50:5550–5564

    Article  CAS  Google Scholar 

  23. Oh N-W, Jegal J, Lee K-H (2001) Preparation and characterization of nanofiltration composite membranes using polyacrynitrile (PAN). II. Preparation and characterization of polyamide composite membranes. J Appl Polym Sci 80:2729–2736

    Article  CAS  Google Scholar 

  24. Kanagaraj P, Nagendran A, Rana D, Matsuura T, Neelakandan S, Malarvizhi K (2015) Effects of polyvinylpyrrolidone on the permeation and fouling-resistance properties of polyetherimide ultrafiltration membranes. Ind Eng Chem Res 54:4832–4838

    Article  CAS  Google Scholar 

  25. Zhu J, Zheng J, Zhang Q, Zhang S (2016) Antifouling ultrafiltration membrane fabricated from poly (arylene ether ketone) bearing hydrophilic hydroxyl groups. J Appl Polym Sci 133(42809):1–11

    Google Scholar 

  26. Santiago-Garcia JL, Perez-Francisco JM, Zolotukhin MG, Vázquez-Torres H, Aguilar-Vega M, González-Díaz MO (2017) Gas transport properties of novel poly- and copolyamides bearing bulky functional groups. J Membr Sci 522:333–342

    Article  CAS  Google Scholar 

  27. Puspasari T, Pradeep N, Peinemann KV (2015) Crosslinked cellulose thin film composite nanofiltration membranes with zero salt rejection. J Membr Sci 491:132–137

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support by CONACYT-FOMIX under the Grant number 108200. Marcial Yam‐Cervantes gratefully acknowledge financial support from CONACyT Grant 344563. The authors are thankful to Dr. Patricia Quintana and Dr. Emmanuel Hernández for 1H-NMR analysis from the National Laboratory of Nano and Biomaterials (LANNBIO). Partial funding from Grants FOMIX-Yucatán 2008-108160, CONACYT LAB-2009-01-123913 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neyi Eloisa Estrella-Gómez or Manuel Aguilar-Vega.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yam-Cervantes, M., León-Campos, I., Sánchez, J. et al. Poly(hydroxyamide) as support for thin-film composite membranes for water treatment. Polym. Bull. 76, 4613–4625 (2019). https://doi.org/10.1007/s00289-018-2619-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2619-0

Keywords

Navigation