Skip to main content
Log in

A New Scalarization Technique to Approximate Pareto Fronts of Problems with Disconnected Feasible Sets

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We introduce and analyze a novel scalarization technique and an associated algorithm for generating an approximation of the Pareto front (i.e., the efficient set) of nonlinear multiobjective optimization problems. Our approach is applicable to nonconvex problems, in particular to those with disconnected Pareto fronts and disconnected domains (i.e., disconnected feasible sets). We establish the theoretical properties of our new scalarization technique and present an algorithm for its implementation. By means of test problems, we illustrate the strengths and advantages of our approach over existing scalarization techniques such as those derived from the Pascoletti–Serafini method, as well as the popular weighted-sum method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gass, S., Saaty, T.: The computational algorithm for the parametric objective function. Nav. Res. Logist. Q. 2, 39–45 (1955)

    Article  MathSciNet  Google Scholar 

  2. Zadeh, L.: Optimality and non-scalar-valued performance criteria. IEEE Trans. Autom. Control 8, 59–60 (1963)

    Article  Google Scholar 

  3. Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making: Theory and Methodology. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

  4. Eichfelder, G.: Adaptive Scalarization Methods in Multiobjective Optimization. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  5. Eichfelder, G.: Scalarizations for adaptively solving multi-objective optimization problems. Comput. Optim. Appl. 44, 249–273 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Eichfelder, G.: An adaptive scalarization method in multi-objective optimization. SIAM J. Optim. 19, 1694–1718 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Huband, S., Hingston, P., Barone, L., While, L.: A review of multi-objective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

    Article  Google Scholar 

  8. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26(6), 369–395 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ehrgott, M., Ruzika, S.: Improved ε-constraint method for multiobjective programming. J. Optim. Theory Appl. 138, 375–396 (2008)

    Article  MathSciNet  Google Scholar 

  10. Engau, A., Wiecek, M.M.: Generating ε-efficient solutions in multiobjective programming. Eur. J. Oper. Res. 177, 1566–1579 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Steuer, R.: Multiple Criteria Optimization: Theory, Computation and Application. Wiley, New York (1985)

    Google Scholar 

  12. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  13. Benson, H.P., Morin, T.L.: The vector maximization problem: proper efficiency and stability. SIAM J. Appl. Math. 32, 64–72 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  14. Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  15. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic, Boston (1999)

    MATH  Google Scholar 

  16. Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42(4), 499–524 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dutta, J., Kaya, C.Y.: A new scalarization and numerical method for constructing weak Pareto front of multi-objective optimization problems. Optimization 60(8–9), 1091–1104 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Collette, Y., Siarry, P.: Multiobjective Optimization. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  19. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8, 631–657 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mueller-Gritschneder, D., Graeb, H., Schlichtmann, U.: A successive approach to compute the bounded Pareto front of practical multiobjective optimization problems. SIAM J. Optim. 20, 915–934 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: On augmented Lagrangian methods with general lower-level constraints. SIAM J. Optim. 18, 1286–1309 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: Augmented Lagrangian methods under the constant positive linear dependence constraint qualification. Math. Program. 111, 5–32 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming, 2nd edn. Brooks/Cole Publishing Company/Cengage Learning, Stamford (2003)

    Google Scholar 

  24. Tanaka, M., Watanabe, H., Furukawa, Y., Tanino, T.: GA-based decision support system for multicriteria optimization. In: Proc. IEEE Int. Conf. Syst., Man. and Cybernetics, vol. 2, pp. 1556–1561 (1995)

    Google Scholar 

  25. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  26. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolution algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  27. Jin, Y., Olhofer, M., Sendhoff, B.: Evolutionary dynamic weighted aggregation for evolutionary multi-objective optimization: why does it work and how? In: Proc. Genetic and Evolutionary Computation Conference, San Francisco, CA, pp. 1042–1049 (2001)

    Google Scholar 

  28. Bonnel, H., Kaya, C.Y.: Optimization over the efficient set of multi-objective convex optimal control problems. J. Optim. Theory Appl. 147, 93–112 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Philip, J.: Algorithms for the vector maximization problem. Math. Program. 2, 207–229 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  30. Benson, H.P.: Optimization over the efficient set. J. Math. Anal. Appl. 98, 562–580 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  31. Dauer, J.P., Fosnaugh, T.A.: Optimization over the efficient set. J. Glob. Optim. 7, 261–277 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yang, X.Q., Goh, C.J.: A method for convex curve approximation. Eur. J. Oper. Res. 97, 205–212 (1997)

    Article  MATH  Google Scholar 

  33. Liu, Y., Teo, K.L., Yang, X.Q.: Approximation methods for non-convex curves. Eur. J. Oper. Res. 117, 125–135 (1999)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

M.M. Rizvi acknowledges support by a UniSA President’s Scholarship and the School of Mathematics and Statistics at the University of South Australia. The authors would like to thank the Editors and the two reviewers for their constructive comments, which improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Rizvi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burachik, R.S., Kaya, C.Y. & Rizvi, M.M. A New Scalarization Technique to Approximate Pareto Fronts of Problems with Disconnected Feasible Sets. J Optim Theory Appl 162, 428–446 (2014). https://doi.org/10.1007/s10957-013-0346-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0346-0

Keywords

Navigation