Skip to main content
Log in

Acid Dissociation Constants, Enthalpy, Entropy and Gibbs Energy of Bedaquiline by UV-Metric Spectral and pH-Metric Analysis

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Bedaquiline (trade name Sirturo) is an antibiotic used to treat pulmonary tuberculosis that is resistant to other antibiotics. The pH-spectrophotometric and pH-potentiometric titrations allowed the measurement of two near successive and one distant dissociation constants. The neutral bedaquiline LH molecule was able to protonate and dissociate in pure water to form soluble species L, LH, \({\text{LH}}_{2}^{ + }\), \({\text{LH}}_{3}^{2 + }\) and \({\text{LH}}_{4}^{3 + }\). In the pH range 2–7, three dissociation constants can be reliably estimated. REACTLAB (UV-metric spectral analysis) values are: \({\text{p}}K_{{{\text{a}}1}}^{T}\) = 3.91(09), \({\text{p}}K_{{{\text{a}}2}}^{T}\) = 4.58(12) and \({\text{p}}K_{{{\text{a3}}}}^{T}\) = 5.26(07) at 25 °C and \({\text{p}}K_{{{\text{a}}1}}^{T}\) = 3.61(30), \({\text{p}}K_{{{\text{a2}}}}^{T}\) = 4.44(15) and \({\text{p}}K_{{{\text{a3}}}}^{T}\) = 5.54(33) at 37 °C. ESAB (pH-metric analysis) values are: \({\text{p}}K_{{{\text{a}}1}}^{T}\) = 3.21(39), \({\text{p}}K_{{{\text{a2}}}}^{T}\) = 3.68(31) and \({\text{p}}K_{{{\text{a3}}}}^{T}\) = 5.21(42) at 25 °C and \({\text{p}}K_{{{\text{a}}1}}^{T}\) = 3.31(12), \({\text{p}}K_{{{\text{a2}}}}^{T}\) = 3.67(15) and \({\text{p}}K_{{{\text{a3}}}}^{T}\) = 5.73(08) at 37 °C. Molar enthalpy ΔH0, molar entropy ΔS0 and Gibbs energy ΔG0 were calculated from the spectra using the dependence of ln K on 1/T. The potentiometric data showed positive enthalpy ΔH0(pKa1) = 85.49 kJ·mol−1, ΔH0(pKa2) = 86.42 kJ·mol−1, and ΔH0(pKa3) = 65.84 kJ·mol−1 values and the dissociation reactions were endothermic. The entropy ΔS0 at 25 °C was positive for the three dissociation constants ΔS0(pKa1) = 217.47 J·K−1·mol−1, ΔS0(pKa2) = 204.87 J·K−1·mol−1, and ΔS0(pKa3) = 92.63 J·K−1·mol−1 at 25 °C and proved irreversible dissociation reactions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Wikipedia: Bedaquiline. Wikipedia-https://pubchem.ncbi.nlm.nih.gov/compound/Bedaquiline (2013)

  2. Multum, C.: Bedaquiline. Drugs.com https://www.drugs.com/mtm/Bedaquiline.html (2020)

  3. Prakash, S.: Pharmacovigilance in India. Indian J. Pharmacol. 39(3), 1 (2007). https://doi.org/10.4103/0253-7613.33430

    Article  Google Scholar 

  4. Sarathy, J.P., Gruber, G., Dick, T.: Re-Understanding the mechanisms of action of the anti-mycobacterial drug bedaquiline. Antibiotics 8(4), 261–273 (2019). https://doi.org/10.3390/antibiotics8040261

    Article  CAS  PubMed Central  Google Scholar 

  5. Koul, A., Dendouga, N., Vergauwen, K., Molenberghs, B., Vranckx, L., Willebrords, R., Ristic, Z., Lill, H., Dorange, I., Guillemont, J., Bald, D., Andries, K.: Diarylquinolines target subunit C of mycobacterial ATP synthase. Nat. Chem. Biol. 3(6), 323–324 (2007). https://doi.org/10.1038/nchembio884

    Article  CAS  PubMed  Google Scholar 

  6. Segala, E., Sougakoff, W., Nevejans-Chauffour, A., Jarlier, V., Petrella, S.: New mutations in the mycobacterial ATP synthase: new insights into the minding of the diarylquinoline TMC207 to the ATP synthase C-ring structure. Antimicrob. Agents Chemother. 56(5), 2326–2334 (2012). https://doi.org/10.1128/AAC.06154-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goldberg, R.N., Kishore, N., Lennen, R.M.: Thermodynamic quantities for the ionization reactions of buffers. J. Phys. Chem. Ref. Data 31(2), 231–370 (2002). https://doi.org/10.1063/1.1416902

    Article  CAS  Google Scholar 

  8. Williams, H.D., Trevaskis, N.L., Charman, S.A., Shankere, R.M., Charman, W.N., Pouton, C.E., Porter, C.J.H.: Strategies to address low drug solubility in discovery and development. Pharmacol. Rev. 65(1), 315–499 (2013). https://doi.org/10.1124/pr.112.005660

    Article  CAS  PubMed  Google Scholar 

  9. Al-Bedair, L.A.: Potentiometric studies on the binary and mixed ligand complexes in solution: Zn(II)– amlodipine–amino acids systems. Orient. J. Chem. 32(1), 609–615 (2016). https://doi.org/10.13005/Ojc/320169

    Article  CAS  Google Scholar 

  10. Alderighi, L., Gans, P., Lenco, A., Peters, D., Sabatini, A., Vacca, A.: Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 184, 311–318 (1999). https://doi.org/10.1016/S0010-8545(98)00260-4

    Article  CAS  Google Scholar 

  11. Byrne, L.A., Hynes, M.J., Connolly, C.D., Murphy, R.A.: Analytical determination of apparent stability constants using a copper ion selective electrode. J. Inorg. Biochem. 105(12), 1656–1661 (2011). https://doi.org/10.1016/j.jinorgbio.2011.07.016

    Article  CAS  PubMed  Google Scholar 

  12. De Stefano, C., Princi, P., Rigano, C., Sammartano, S.: Computer analysis of equilibrium data in solution ESAB2M: an improved version of the ESAB program. Ann. Chim. 77(7–8), 643–675 (1987)

    Google Scholar 

  13. Gans, P., Sabatini, A., Vacca, A.: Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43(10), 1739–1753 (1996). https://doi.org/10.1016/0039-9140(96)01958-3

    Article  CAS  PubMed  Google Scholar 

  14. Gans, P., Sabatini, A., Vacca, A.: Hyperquad computer-program suite. Abstr. Pap. Am. Chem. Soc. 219, U763–U763 (2000)

    Google Scholar 

  15. Gans, P., Sabatini, A., Vacca, A.: Simultaneous calculation of equilibrium constants and standard formation enthalpies from calorimetric data for systems with multiple equilibria in solution. J. Solution Chem. 37(4), 467–476 (2008). https://doi.org/10.1007/s10953-008-9246-6

    Article  CAS  Google Scholar 

  16. Allen, R.I., Box, K.J., Comer, J.E.A., Peake, C., Tam, K.Y.: Multiwavelength spectrophotometric determination of acid dissociation constants of ionizable drugs. J. Pharm. Biomed. Anal. 17(4–5), 699–712 (1998). https://doi.org/10.1016/S0731-7085(98)00010-7

    Article  CAS  PubMed  Google Scholar 

  17. Meloun, M., Ferenčíková, Z., Niesnerová, I., Pekárek, T.: Oligomers-model building in protonation equilibria of sitagliptin. Cent. Eur. J. Chem. 11(11), 1799–1807 (2013). https://doi.org/10.2478/s11532-013-0304-6

    Article  CAS  Google Scholar 

  18. Krotz-Vogel, W., Hoppe, H.C.: The PALLAS parallel programming environment. Lect. Notes Comput. Sci. 1332, 257–266 (1997). https://doi.org/10.1007/3-540-63697-8_93

    Article  Google Scholar 

  19. Krotz-Vogel, W., Hoppe, H.C.: PALLAS parallel tools—a uniform programming environment from workstations to teraflop computers. Adv. Parallel Comput. 12, 349–358 (1998)

    Article  Google Scholar 

  20. Meloun, M., Syrový, T., Bordovská, S., Vrána, A.: Reliability and uncertainty in the estimation of pK(a) by least squares nonlinear regression analysis of multiwavelength spectrophotometric pH titration data. Anal. Bioanal. Chem. 387(3), 941–955 (2007). https://doi.org/10.1007/s00216-006-0993-1

    Article  CAS  PubMed  Google Scholar 

  21. Japertas, P., Lanevskij, K., Sazonovas, A.: ACD/Percepta structure design engine: virtual enumeration and screening of physchem properties for 10(16) compounds in real time. Abstr. Pap. Am. Chem. Soc. 248 (2014)

  22. ACD/pKa DB. In: pK Prediction Software. Advanced Chemistry Development, Inc., Toronto, Canada (2021). https://www.acdlabs.com

  23. ACD/Labs pKa Predictor 3.0. In: Inc., A.C.D. (ed.) Toronto, Canada (2007). https://www.acdlabs.com, 2021

  24. Balogh, G.T., Gyarmati, B., Nagy, B., Molnar, L., Keseru, G.M.: Comparative evaluation of in silico pK(a) prediction tools on the gold standard dataset. Qsar Comb. Sci. 28(10), 1148–1155 (2009). https://doi.org/10.1002/gsar.200960036

    Article  CAS  Google Scholar 

  25. ChemAxon: MARVINSketch 4.1.8. In: ChemAxon, 2007. MarvinSketch 4.1.8. XhemAxon Kft. Budapest, Hungary. http://www.chemaxon.com/products.html, vol. 2007. ChemAxon, 2007 XhemAxon Kft. Budapest, Hungary (2007)

  26. Meloun, M., Bordovská, S., Syrový, T.: A novel computational strategy for the pK(a) estimation of drugs by non-linear regression of multiwavelength spectrophotometric pH-titration data exhibiting small spectral changes. J. Phys. Org. Chem. 20(9), 690–701 (2007). https://doi.org/10.1002/poc.1235

    Article  CAS  Google Scholar 

  27. Manchester, J., Walkup, G., Rivin, O., You, Z.P.: Evaluation of pK(a) estimation methods on 211 drug like compounds. J. Chem. Inf. Model. 50(4), 565–571 (2010). https://doi.org/10.1021/ci100019p

    Article  CAS  PubMed  Google Scholar 

  28. Meloun, M., Bordovská, S.: Benchmarking and validating algorithms that estimate pK(a) values of drugs based on their molecular structures. Anal. Bioanal. Chem. 389(4), 1267–1281 (2007). https://doi.org/10.1007/s00216-007-1502-x

    Article  CAS  PubMed  Google Scholar 

  29. Meloun, M., Bordovská, S., Syrový, T., Vrána, A.: Tutorial on a chemical model building by least-squares non-linear regression of multiwavelength spectrophotometric pH-titration data. Anal. Chim. Acta 580(1), 107–121 (2006). https://doi.org/10.1016/j.aca.2006.07.043

    Article  CAS  PubMed  Google Scholar 

  30. Meloun, M., Čápová, A., Pilařová, L., Pekárek, T.: Multiwavelength UV-metric and pH-metric determination of the multiple dissociation constants of the Lesinurad. J. Pharm. Biomed. Anal. 158, 236–246 (2018). https://doi.org/10.1016/j.jpba.2018.05.047

    Article  CAS  PubMed  Google Scholar 

  31. Meloun, M., Havel, J., Högfeldt, E.: Computation of Solution Equilibria: A Guide to Methods in Potentiometry, Extraction, and Spectrophotometry. Ellis Horwood Series in Analytical Chemistry. Ellis Horwood, Chichester (1988)

    Google Scholar 

  32. Rodante, F., Fantauzzi, F.: Thermodynamic analysis of the ionization of ortho and para toluic acids—influence of the medium on the hyperconjugative and steric effects. Thermochim. Acta 109(2), 353–365 (1987). https://doi.org/10.1016/040-6031(87)80031-X

    Article  CAS  Google Scholar 

  33. Meloun, M., Ferenčíková, Z.: Enthalpy–entropy compensation for some drugs dissociation in aqueous solutions. Fluid Phase Equil. 328, 31–41 (2012). https://doi.org/10.1016/j.fluid.2012.05.011

    Article  CAS  Google Scholar 

  34. Debnath, A.K., Shusterman, A.J., Decompadre, R.L.L., Hansch, C.: The importance of the hydrophobic interaction in the mutagenicity of organic-compounds. Mutat. Res. 305(1), 63–72 (1994). https://doi.org/10.1016/0027-5107(94)90126-0

    Article  CAS  PubMed  Google Scholar 

  35. Gruber, C., Buss, V.: Quantum mechanically calculated properties for the development of quantitative structure–activity–relationships (Qsars)—pKa values of phenols and aromatic and aliphatic carboxylic-acids. Chemosphere 19(10–11), 1595–1609 (1989). https://doi.org/10.1016/0045-6535(89)90503-1

    Article  Google Scholar 

  36. Shusterman, A.J.: Predicting mutagenicity—use a technique thats been useful in predicting efficacy. ChemTech 21(10), 624–627 (1991)

    CAS  Google Scholar 

  37. Trapani, G., Carotti, A., Franco, M., Latrofa, A., Genchi, G., Liso, G.: Structure affinity relationships of some alkoxycarbonyl-2h-pyrimido[2,1-B]benzothiazol-2-ones or alkoxycarbonyl-4h-pyrimido[2,1-B]benzothiazol-4-ones benzodiazepine receptor ligands. Eur. J. Med. Chem. 28(1), 13–21 (1993). https://doi.org/10.1016/0223-5234(93)90074-O

    Article  CAS  Google Scholar 

  38. Aguerre, R.J., Suarez, C., Viollaz, P.E.: Enthalpy–entropy compensation in sorption phenomena—application to the prediction of the effect of temperature on food isotherms. J. Food Sci. 51(6), 1547–1549 (1986). https://doi.org/10.1111/j.1365-2621.1986.tb13856.x

    Article  CAS  Google Scholar 

  39. Gabas, A.L., Telis-Romero, J., Menegalli, F.C.: Thermodynamic models for water sorption by grape skin and pulp. Dry. Technol. 17(4–5), 961–974 (1999). https://doi.org/10.1080/07373939908917584

    Article  CAS  Google Scholar 

  40. Labuza, T.P.: Enthalpy–entropy compensation in food reactions. Food Technol-Chicago 34(2), 67–77 (1980)

    CAS  Google Scholar 

  41. Liu, L., Guo, Q.X.: Isokinetic relationship, isoequilibrium relationship, and enthalpy–entropy compensation. Chem. Rev. 101(3), 673–695 (2001). https://doi.org/10.1021/cr990416z

    Article  CAS  PubMed  Google Scholar 

  42. Meloun, M., Nečasová, V., Javůrek, M., Pekárek, T.: The dissociation constants of the cytostatic bosutinib by nonlinear least-squares regression of multiwavelength spectrophotometric and potentiometric pH-titration data. J. Pharm. Biomed. Anal. 120, 158–167 (2016). https://doi.org/10.1016/j.jpba.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  43. Meloun, M., Pilařová, L., Čápová, A., Pekárek, T.: The overlapping thermodynamic dissociation constants of the antidepressant vortioxetine using UV-vis multiwavelength pH-titration data. J. Solution Chem. 47(5), 806–826 (2018). https://doi.org/10.1007/s10953-018-0757-5

    Article  CAS  Google Scholar 

  44. Meloun, M., Říha, V., Žáček, J.: Piston microburette for dosing aggressive liquids. Chem. Listy 82(7), 765–767 (1988)

    CAS  Google Scholar 

  45. Leggett, D.J., McBryde, W.A.E.: General computer program for the computation of stability constants from absorbance data. Anal. Chem. 47(7), 1065–1070 (1975). https://doi.org/10.1021/ac60357a046

    Article  CAS  Google Scholar 

  46. Maeder, M., King, P.: Analysis of chemical processes, determination of the reaction mechanism and fitting of equilibrium and/or rate constants. In: Varmuza, K. (ed.) Chemometrics in Practical Applications, pp.41–62. Rjeka, InTech

    Google Scholar 

  47. Meloun, M., Čapek, J., Mikšík, P., Brereton, R.G.: Critical comparison of methods predicting the number of components in spectroscopic data. Anal. Chim. Acta 423(1), 51–68 (2000). https://doi.org/10.1016/S0003-2670(00)01100-4

    Article  CAS  Google Scholar 

  48. ORIGIN. In. OriginLab Corporation, One Roundhouse Plaza, Suite 303, Northampton, MA 01060, USA

  49. Meloun, M., Militký, J.: Statistical Data Analysis: A Practical Guide, Complete with 1250 exercises and answer key on CD, 1st edn. Woodhead Publishing Limited, 80 High street Sawstone Cambridge, CB22 3HJ, UK, New Delhi, Cambridge, Oxford, Philadelphia (2011)

  50. Meloun, M., Militký, J., Forina, M.: Chemometrics for Analytical Chemistry. PC-Aided Regression and Related Methods, vol. 2. Ellis Horwood, Chichester (1994), ISBN 0-13-123788-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Meloun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meloun, M., Cyrmonová, D., Javůrek, M. et al. Acid Dissociation Constants, Enthalpy, Entropy and Gibbs Energy of Bedaquiline by UV-Metric Spectral and pH-Metric Analysis. J Solution Chem 50, 315–339 (2021). https://doi.org/10.1007/s10953-021-01055-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01055-w

Keywords

Navigation