Skip to main content
Log in

Influence of Hydrocarbon Doping on Critical Current Density and Percolation Behavior of MgB2

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In polycrystalline MgB2 samples, the crystal grains are randomly oriented, and the anisotropy of the upper critical field leads to different supercurrent carrying capacities in different grains, so the overall supercurrent becomes percolation in applied magnetic field. In this paper, we studied the doping effect of citric acid on the critical current density and the percolation behavior in polycrystalline MgB2 samples. By fitting the experimental data with the percolation model, it is found that the anisotropy of the upper critical field is gradually decreased by doping citric acid, which alters the percolation behavior of the supercurrent of the polycrystalline MgB2 samples. In addition, it is observed that deviation of the experimental data from the typical grain boundary pinning theory reduces with increasing doping level or as the temperature approaching Tc. The phenomenon is well explained according to the systematical decrease of anisotropy parameter \(\gamma=(B_{c2}^\parallel/B_{c2}^\perp)\) with doping level and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001)

    Article  ADS  Google Scholar 

  2. Kambara, M., Babu, N.H., Sadiki, E.S., Cooper, J.R., Minami, H., Cardwell, D.A., Campbell, A.M., Inoue, I.H.: High intergranular critical currents inmetallic MgB2 superconductor. Supercond. Sci. Technol. 14, L5–L7 (2001)

    Article  ADS  Google Scholar 

  3. Finnemore, D.K., Ostenson, J.E., Bud’ko, S.L., Lapertot, G., and Canfield, P.C.: Thermodynamic and transport properties of superconducting Mg10B2. Phys. Rev. Lett. 86, 2420 (2001)

  4. Larbalestier, C.B., Rikel, M.O., Cooley, L.D., Polyanskii, A.A., Jiang, J.Y., Patnaik, S., Cai, X.Y., Feldmann, D.M., Gurevich, A., Squitieri, A.A., Naus, M.T., Eom, C.B., Hellstrom, E.E., Cava, R.J., Regan, K.A., Rogado, N., Hayward, M.A., He, T., Slusky, J.S., Khalifah, P., Inumaru, K., Haas, M.: Strongly linked current flow in polycrystalline forms of the superconductor MgB2. Nature 410, 186–189 (2001)

    Article  ADS  Google Scholar 

  5. Eom, C.B., Lee, M.K., Choi, J.H., Belenky, L.J., Song, X., Cooley, L.D., Naus, M.T., Patnaik, S., Jiang, J., Rikel, M., Polyanskii, A., Gurevich, A., Cai, X.Y., Bu, S.D., Babcock, S.E., Hellstrom, E.E., Larbalestier, D.C., Rogado, N., Regan, K.A., Hayward, M.A., He, T., Slusky, J.S., Inumaru, K., Haas, M.K., Cava, R.J.: High critical current density and enhanced irreversibility field in superconducting MgB2 thin films. Nature 411, 558–560 (2001)

    Article  ADS  Google Scholar 

  6. Serquis, A., Liao, X.Z., Civale, L., Zhu, Y.T., Coulter, J.Y., Perterson, D.E., Mueller, F.M.: The influence of structural defects on intra-granular critical currents of bulk MgB2. IEEE Trans. Appl. Supercond. 13, 3068–3071 (2003)

    Article  ADS  Google Scholar 

  7. Martinez, E., Mikheenko, P., Milllan, A., Beavan, A., and Abell, J.S.: Flux pinning force in bulk MgB2 with variable grain size. Phys. Rev. B. 75, 134515(1)–(8) (2007)

  8. Keshavarzi, S., Qin, M.J., Soltanian, S., Liu, H.K., Dou, S.X.: Vortex dynamics in pure and SiC-doped MgB2. Phys. C. 408–410, 601–602 (2004)

    Article  ADS  Google Scholar 

  9. Eisterer, M.: Magnetic properties and critical currents of MgB2. Supercond. Sci. Technol. 12, R47–R73 (2007)

    Article  Google Scholar 

  10. Gurevich, A.: Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors. Phys. Rev. B. 67, 184515 (2003)

  11. Gurevich, A., Patnaik, S., Braccini, V., Kim, K.H., Mielke, C., Song, X., Cooley, L.D., Bu, S.D., Kim, D.M., Choi, J.H., Belenky, L.J., Giencke, J., Lee, M.K., Tian, W., Pan, X.Q., Siri, A., Hellstrom, E.E., Eom, C.B., Larbalestier, D.C.: Very high upper critical fields in MgB2 produced by selective tuning of impurity scattering. Supercond. Sci. Technol. 17, 278 (2004)

    Article  ADS  Google Scholar 

  12. Mudgel, M., Sharath Chandra, L.S., Ganesan, V., Bhalla, G.L., Kishan,H., Awana, V.P.S.: Enhanced critical parameters of nanocarbon doped MgB2 superconductor. J. Appl. Phys. 106, 033904 (2009)

  13. Vajpayee, A., Jha, R., Srivastava, A.K., Kishan, H., Tropeano, M., Ferdeghini, C., Awana, V.P.S.: The effect of synthesis temperature on the superconducting properties of n-SiC added bulk MgB2 superconductor. Supercond. Sci. Technol. 24, 045013 (2011)

  14. Braccini, V., Gurevich, A., Giencke, J.E., Jewell, M.C., Eom, C.B., Larbalestier, D.C., Pogrebnyakov, A., Cui, Y., Liu, B.T., Hu, Y.F., Redwing, J.M., Li, Q., Xi, X.X., Singh, P.K., Gandikota, R., Kim, J., Wilkens, B., Newman, N., Rowell, J., Moeckly, B., Ferrando, V., Tarantini, C., Marré, D., Putti, M., Ferdeghini, C., Vaglio, R., and Haanappel, E.: High-field superconductivity in alloyed MgB2 thin films. Phys. Rev. B. 71, 012504 (2005)

  15. Soltanian, S., Horvat, J., Wang, X.L., Munroe, P., Dou, S.X.: Effect of nano-carbon particle doping on the flux pinning properties of MgB2 superconductor. Phys. C. 390, 185 (2003)

    Article  ADS  Google Scholar 

  16. Zhao, Y., Cheng, C.H., Rui, X.F., Zhang, H., Munroe, P., Zeng, H.M., Koshizuka, N., Murakami, M.: Improved irreversibility behavior and critical current density in MgB2-diamond nanocomposites. Appl. Phys. Lett. 83, 2916 (2003)

    Article  ADS  Google Scholar 

  17. Dou, S.X., Yeoh, W.K., Horvat, J., Ionescu, M.: Effect of carbon nanotube doping on critical current density of MgB2 superconductor. Appl. Phys. Lett. 83, 4996 (2003)

    Article  ADS  Google Scholar 

  18. Wei, J., Li, Y., Xu, C., Wei, B., Wu, D.: Structure and superconductivity of MgB2-carbon nanotube composites. Mater. Chem. Phys. 78, 785 (2003)

    Article  Google Scholar 

  19. Bean, C.P.: Magnetization of hard superconductors. Phys. Rev. Lett. 8, 250–253 (1962)

    Article  ADS  Google Scholar 

  20. Kang, S.G., Chung, J.K., Park, S.C., Jeong, D.G., Kim, C.J.: Study of microstructure of hydrocarbon doped Mgb2 wires by transmission on electron microscopy. Inter. J. Mod. Phys. B 23, 3492 (2009)

    Article  ADS  Google Scholar 

  21. Avdeeva, M., Jorgensena, J.D., Ribeirob, R.A., Bud’ko, S.L., Canfield, P.C.: Crystal chemistry of carbon-substituted MgB2. Physica C 387, 301–306 (2003)

  22. Wilke, R.H.T., Bud’ko, S.L., Canfield, P.C., Finnemore, D.K., Suplinskas, R.J., and Hannahs, S.T.: Systematic effects of carbon doping on the superconducting properties of Mg(B1 − xCx)2. Phys. Rev. Lett. 92, 217003(1)–(4) (2004)

  23. Cheng, C.H., Yang, Y., Munroe, P., Zhao, Y.: Comparison between nano-diamond and carbon nanotube doping effects on critical current density and flux pinning in MgB2. Supercond. Sci. Technol. 20, 296–301 (2007)

    Article  ADS  Google Scholar 

  24. Masui, T., Lee, S., and Tajima, S.: Carbon-substitution effect on the electronic properties of MgB2 single crystals. Phys. Rev. B. 70, 024504(1)–(7) (2004)

  25. Tilley, D.R.: The Ginsburg-Landau equations for anisotropic alloys. Proc. Phys. soc. 86, 289–295 (1965)

    Article  ADS  Google Scholar 

  26. Eistere, M., Krutzler, C., and Weber, H.W.: Influence of the upper critical-field anisotropy on the transport properties of polycrystalline MgB2. J. Appl. Phys. 98, 033906(1)–(5) (2005)

  27. Angst, M., Puzniak, R., Wisniewski, A., Jun, J., Kazkov, S.M., Karpinski, J., Roos, J., and Keller, H.: Temperature and field dependence of the anisotropy of MgB2. Phys . Rev. Lett. 88, 167004(1)-167004(4) (2002)

  28. Eisterer, M., Zehetmayer, M., and Weber, H.W.: Current percolation and anisotropy in polycrystalline MgB2. Phys. Rev. Lett. 90, 247002(1)–(4) (2003)

  29. Kramer, E.J.: Scaling laws for flux pinning in hard superconductors. J. Appl. Phys. 44, 1360 (1973)

    Article  ADS  Google Scholar 

Download references

Funding

This work received the financial support from the National Key R&D Program of China (No. 2017YFE0301401), the Industrial Guidance (Key) Project of Fujian Science and Technology Department (Grant No. 2020H0013). The Fujian Normal University granted Y. Z. the financial support of the talent project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Yang or Y. Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, J.J., Yang, Y., Wang, L. et al. Influence of Hydrocarbon Doping on Critical Current Density and Percolation Behavior of MgB2. J Supercond Nov Magn 35, 415–422 (2022). https://doi.org/10.1007/s10948-021-06096-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06096-2

Keywords

Navigation