Skip to main content
Log in

The Effect of Anisotropy of H c 2 on Transport Current in Silicone Oil-Doped MgB2 Superconductor

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The temperature and magnetic field dependences of the critical current density in silicone oil-doped MgB2 polycrystalline samples have been investigated by magnetic measurements. The upper critical magnetic field anisotropy, \(\gamma =H_{\mathrm {c}2}^{\bot \mathrm {c}}/H_{\mathrm {c}2}^{\vert \vert \mathrm {c}}\) dependence of the critical current density, J c(B), were analyzed within the percolation model. The calculated critical current densities based on percolation theory are in agreement with the experimental data. It was found that the anisotropy, γ, and the percolation threshold parameter, p c, show different trends in their temperature dependence, where γ increases, but p c decreases with increasing temperature. It is suggested that the anisotropy is responsible for the reduction of the critical current density in high magnetic field. The relationship between the anisotropy and the volume pinning force is investigated. It was found that the position of the maximum of the volume pinning force is shifted to lower reduced magnetic field by decreasing the anisotropy and increasing the percolation threshold p c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitali, Y., Akimitsu, J.: Nat. (Lond.) 410, 63 (2001)

    Article  ADS  Google Scholar 

  2. Kambara, M., Hari Babu, N., Sadki, E.S., Cooper, J.R., Minami, H., Cardwell, D.A., Campbell, A.M, Inoue, I.H.: Supercond. Sci. Technol. 14, L5 (2001)

    Article  ADS  Google Scholar 

  3. Finnemore, D.K., Ostenson, J.E., Bud’ko, S.L., Lapertot, G., Canfield, P.C.: Phys. Rev. Lett. 86, 2420 (2001)

    Article  ADS  Google Scholar 

  4. Eisterer, M., Zehetmayer, M., Weber, H.W.: Phys. Rev. Lett. 90, 247002 (2003)

    Article  ADS  Google Scholar 

  5. Christen, D.K., et al.: Mater. Res. Soc. Symp. Proc. 689(E2), 1 (2002)

    Google Scholar 

  6. Kirkpatrick, S.: Rev. Mod. Phys. 45, 574 (1973)

    Article  ADS  Google Scholar 

  7. Davidson, A., Tinkham, M.: Phys. Rev. B 13, 3261 (1976)

    Article  ADS  Google Scholar 

  8. Deutscher, G., Entin-Wohlman, O, Fishman, S., Shapira, Y.: Phys. Rev. B 21, 5041 (1980)

    Article  ADS  Google Scholar 

  9. Entin-Wohlman, O., Kapitulnik, A., Alexander, S., Deutscher, G.: Phys. Rev. B 30, 2617 (1984)

    Article  ADS  Google Scholar 

  10. Specht, E.D., Goyal, A., Kroeger, D.M.: Phys. Rev. B 53, 3585 (1996)

    Article  ADS  Google Scholar 

  11. Prester, M.: Phys. Rev. B 54, 606 (1996)

    Article  ADS  Google Scholar 

  12. Osamura, K., Ogawa, K., Thamizavel, T., Sakai, A.: Phys. C 335, 65 (2000)

    Article  ADS  Google Scholar 

  13. Haslinger, R., JoyntR: Phys. Rev. B 61, 4206 (2000)

    Article  ADS  Google Scholar 

  14. Nakamura, Y., Izumi, T., Shiohara, Y.: Phys. C 371, 275 (2002)

    Article  ADS  Google Scholar 

  15. Zeimetz, B., Glowacki, B.A., Evetts, J.E.: Eur. Phys. J. B 29, 359 (2002)

    Article  ADS  Google Scholar 

  16. Tilley, D.R.: Proc. Phys. Soc. London 86, 289 (1965)

    Article  ADS  Google Scholar 

  17. Wang, X.L., Cheng, Z.X., Dou, S.X.: Appl. Phys. Lett. 90, 042501 (2007)

    Article  ADS  Google Scholar 

  18. Johansen T.H., Bratsberg H.: Phys. Rev. B 69, 0125017 (2004)

    Google Scholar 

  19. Zhu, Y., Matsumoto, A., Senkowicz, B.J., Kumakura, H., Kitaguchi, H., Jewell, M.C., Hellstrom, E.E., Larbalestier, D.C., Voyles, P.M.: J. Appl. Phys 102, 013913 (2007)

    Article  ADS  Google Scholar 

  20. Kitaguchi, H., Matsumoto, A., Kumakura, H., Doi, T., Sosiati, H., Hata, S.: Appl. Phys. Lett. 85, 2842 (2004)

    Article  ADS  Google Scholar 

  21. Tilley, D.R.: Proc. Phys. Soc. 86, 289 (1965)

    Article  ADS  Google Scholar 

  22. Eisterer, M.: Supercond. Sci. Technol. 20, R47 (2007)

    Article  ADS  Google Scholar 

  23. Dew-Hughes, D.: Phil. Mag. 30, 293 (1974)

    Article  ADS  Google Scholar 

  24. Eisterer, M., Krutzler, C., Weber, H.W.: J. Appl. Phys. 98, 033906 (2005)

    Article  ADS  Google Scholar 

  25. Krutzler, C., Zehetmayer, M., Eisterer, M., Weber, H.W., Zhigadlo, N.D., Karpinski, J.: Phys. Rev. B 75, 224510 (2007)

    Article  ADS  Google Scholar 

  26. Van der Marck, S.C.: Phys. Rev. E 55, 1514 (1997)

    Article  ADS  Google Scholar 

  27. Eisterer, M., Schöppl, K.R., Weber, H.W., Sumption, M.D., Bhatia, M.: IEEE Trans. Appl. Supercond. 17, 2814 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Ghorbani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, S.R., Fahimi, M. The Effect of Anisotropy of H c 2 on Transport Current in Silicone Oil-Doped MgB2 Superconductor. J Supercond Nov Magn 28, 1737–1741 (2015). https://doi.org/10.1007/s10948-015-3000-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3000-2

Keywords

Navigation