Skip to main content
Log in

The impact of reaction time on the hierarchical structure of mesoporous silica synthesized via modified stöber method

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

An investigation was conducted to observe the transformation of mesoporous silica nanoparticles (MSN) prepared using the modified Stober method with a cetyltrimethylammonium bromide (CTAB) template and varying aging periods. The hierarchical structure of the mesoporous silica nanostructure was analyzed using electron microscopy (FE-SEM and TEM) measurements, N2 adsorption, and small-angle X-rays scattering (SAXS). A comprehensive study using these instruments revealed that aging time significantly affected the morphology, pore structures, surface area, and pore size of the particles. It was observed that mesoporous silica grown in diverse morphologies from spherical nanoparticles, irregular particles, and nano-rods with an increase in aging time for 12 h, 18 and 24 h respectively. The SAXS and N2 adsorption measurements unveiled an intriguing relationship where the pore radius and surface area of MSN decreased with longer maturation times, reducing from 4.77 nm to 2.65 nm and from 849.43 m²/g to 572.85 m²/g, respectively. The results of the SAXS analysis also indicated a change in the pore structure due to prolonged reaction time, transitioning from a hexagonal structure to a loss of its orderedness. These findings play a crucial role in enhancing our understanding of how aging time influences the formation mechanism of MSNs for their diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. C. Chircov, A. Spoială, C. Păun, L. Crăciun, D. Ficai, A. Ficai, E. Andronescu, S.C. Turcule, Molecules. 25(17) (2020). https://doi.org/10.3390/molecules25173814

  2. V. Califano, A. Costantini, B. Silvestri, V. Venezia, S. Cimino, F. Sannino, Pure Appl. Chem. 91(10), 1583–1592 (2019). https://doi.org/10.1515/pac-2018-1202

    Article  CAS  Google Scholar 

  3. P.C. Kuo, Z.X. Lin, T.Y. Wu, C.H. Hsu, H.P. Lin, T.S. Wu, RSC Adv. 11(17), 10010–10017 (2021). https://doi.org/10.1039/d1ra01358k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. R.H. Dahal, T.M. Nguyen, D.S. Shim, J.Y. Kim, J. Lee, J. Kim, Antioxidants, 9 (4), 278 (2020). https://doi.org/10.3390/antiox9040278

  5. A.D. Muflikhah, W.Z. Prasetya, A. Lbs, Fisli, Mujamilah, AIP Conf. Proc. 2381 (2021). https://doi.org/10.1063/5.0068014

  6. F. Olivieri, R. Castaldo, M. Cocca, G. Gentile, M. Lavorgna, Mesoporous silica nanoparticles as carriers of active agents for smart anticorrosive organic coatings: a critical review. Nanoscale. 13(20), 9091–9111 (2021)

    Article  CAS  PubMed  Google Scholar 

  7. S. Hadi, S. Suryajaya, I. Wijaya, A. Rahmandari, M.C. Prihatiningsih, I. Prasetyo, A. Patriati, E.G.R. Putra, S. Soontaranon, Atom Indones. 44(1), 9–15 (2018). https://doi.org/10.17146/aij.2018.848

    Article  Google Scholar 

  8. M. Ghaferi, M.K.M. Esfahani, A. Raza, S. Al Harthi, H.E. Shahmabadi, S.E. Alavi, 2021, J. Drug Target 29(2), 131–154 (2021). https://doi.org/10.1080/1061186X.2020.1812614

  9. S. Liu, L. Lu, Z. Yang, P. Cool, E.F. Vansant, Mater. Chem. Phys. 97(2–3), 203–206 (2006). https://doi.org/10.1016/j.matchemphys.2005.09.003

    Article  CAS  Google Scholar 

  10. M. Grün, I. Lauer, K.K. Unger, Adv. Mater. 9(3), 254–257 (1997)

    Article  Google Scholar 

  11. A. Wawrzyńczak, S.Jarmolińska, and, I. Nowak, 2022, Catal. Today 397–399, 526–539 (2021). https://doi.org/10.1016/j.cattod.2021.06.019

  12. A.I.W.S. Ramadani, N.S. Pamungkas, N.A. Putrisetya, M.C. Prihatiningsih, M.D. Permatasari, A.A. Nugroho, S. Suyanta, A. Patriati, S. Soontaranon, E.G.R. Putra, Atom Indones. 46(1), 11–17 (2020). https://doi.org/10.17146/aij.2020.835

    Article  Google Scholar 

  13. R. Narayan, U.Y. Nayak, A.M. Raichur, S. Garg, Pharmaceutics. 10(3), 1–49 (2018). https://doi.org/10.3390/pharmaceutics10030118

    Article  CAS  Google Scholar 

  14. D.M. Oliveira, A.S. Andrada, 2019, Cerâmica 65, 170–179 (2019). https://doi.org/10.1590/0366-69132019653742509

  15. S. Chirra, S. Siliveri, A.K. Adepu, S. Goskula, S.R. Gujjula, V. Narayanan, J. Porous Mater. 26, 1667–1677 (2019). https://doi.org/10.1007/s10934-019-00763-5

    Article  CAS  Google Scholar 

  16. X. Wang, Y. Zhang, W. Luo, A.A. Elzatahry, X. Cheng, A. Alghamdi, A.M. Abdullah, Y. Deng, D. Zhao, Chem. Mater. 28(7), 2356–2362 (2016). https://doi.org/10.1021/acs.chemmater.6b00499

    Article  CAS  Google Scholar 

  17. H.I. Meléndez-Ortiz, A. Mercado-Silva, L.A. García-Cerda, G. Castruita, Y.A. Perera-Mercado, J. Mex Chem. Soc. 57(2), 73–79 (2013). https://doi.org/10.29356/jmcs.v57i2.215

    Article  Google Scholar 

  18. S.A. Sajjadi, A. Izadbakhsh, K. Niknam, J. Pet. Technol. 3(1), 59–82 (2016). https://doi.org/10.22034/JOGPT.2016.43249

    Article  Google Scholar 

  19. E.V. Vyshegorodtseva, Y.V. Larichev, G.V. Mamontov, J. Sol-Gel Sci. Technol. 92(2), 496–505 (2019). https://doi.org/10.1007/s10971-019-05034-y

    Article  CAS  Google Scholar 

  20. A. Galarneau, J. Iapichella, K. Bonhomme, F. De Renzo, P. Kooyman, O. Terasaki, F. Fajula, Adv. Funct. Mater. 16(13), 1657–1667 (2006). https://doi.org/10.1002/adfm.200500825

    Article  CAS  Google Scholar 

  21. G.J. Kim, D.W. Park, J.M. Ha, Korean J. Chem. Eng. 17(3), 337–343 (2000)

    Article  Google Scholar 

  22. D. Baute, H. Zimmermann, S. Kababya, S. Vega, D. Goldfar, Chem. Mater. 17, 3723–3727 (2005)

    Article  CAS  Google Scholar 

  23. F. Di Renzo, F. Testa, J.D. Chen, H. Cambon, A. Galarneau, D. Plee, F. Fajula, Microporous Mesoporous Mater. 28(3), 437–446 (1999). https://doi.org/10.1016/S1387-1811(98)00315-1

    Article  Google Scholar 

  24. Y.T. Shi, H.Y. Cheng, Y. Geng, H.M. Nan, W. Chen, Q. Cai, B.H. Chen, X.D. Sun, Y.W. Yao, H.D. Li, Mater. Chem. Phys. 120(1), 193–198 (2010). https://doi.org/10.1016/j.matchemphys.2009.10.045

    Article  CAS  Google Scholar 

  25. H. Wang, P. Van Der Voort, H. Qu, S. Liu, J. Nanoparticle Res. 15(3) (2013). https://doi.org/10.1007/s11051-013-1501-0

  26. V.C. Noguera, M. Alfonso, P. Amor´os, E. Aznar, M.D. Marcos, R.M. Manez, Microporous Mesoporous Mater. 363, 112840 (2024). https://doi.org/10.1016/j.micromeso.2023.112840

    Article  CAS  Google Scholar 

  27. Z. Yi, L.F. Dumée, C.J. Garvey, C. Feng, F. She, J.E. Rookes, S. Mudie, D.M. Cahill, L. Kong, Langmuir, 31 (30), 8478–8487 (2015). https://doi.org/10.1021/acs.langmuir.5b01637

  28. R.R. Castillo, L. De La Torre, F. García-Ochoa, M. Ladero, M. Vallet-Regí, Int. J. Mol. Sci. 21(21), 1–18 (2020). https://doi.org/10.3390/ijms21217899

    Article  CAS  Google Scholar 

  29. M.C. Prihatiningsih, T. Ariyanto, E.G.R. Putra, V.Y. Susilo, I. Mahendra, I. Prasetyo, ACS Omega. 7(16), 13494–13506 (2022). https://doi.org/10.1021/acsomega.1c06492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J.A.S. Costa, V.H.V. Sarmento, L.P.C. Romão, C.M. Paranhos, Silicon. 12, 1913–1923 (2020). https://doi.org/10.1007/s12633-019-00289-0

    Article  CAS  Google Scholar 

  31. J. Mo, W. Ma, G. Qiu, Y. Shi, J. Mater. Sci. Mater. Electron. 30(1), 130–146 (2019). https://doi.org/10.1007/s10854-018-0275-7

    Article  CAS  Google Scholar 

  32. M. Khalil, A. Amanda, R.T. Yunarti, B.M. Jan, S. Irawan, J. Pet. Sci. Eng. 195, 107660 (2020). https://doi.org/10.1016/j.petrol.2020.107660

    Article  CAS  Google Scholar 

  33. R. Atluri, Dissertation, Upsala University, 2010

  34. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F.R. Reinoso, J. R. and, K.S.W. Sing, Pure Appl. Chem. 87(9–10), 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  35. I. Mohammed, C.C. Afagwu, S. Adjei, I.B. Kadafur, M.S. Jamal, A.A. Awotunde, Oil & Gas Science and Technology – Rev. IFP Energies Nouvelles. 75, 77 (2020). https://doi.org/10.2516/ogst/2020063

    Article  Google Scholar 

  36. A.Z. Abdullah, N. R. and, K.T. Lee, J. Phys. Sci. 21(2), 13–27 (2010)

    CAS  Google Scholar 

  37. T. Tadros (ed.), Encyclopedia of Colloid and Interface Science (Springer-, Berlin Heidelbergk, 2013). https://doi.org/10.1007/978-3-642-20665-8

    Book  Google Scholar 

  38. Z.A. Alothman, Mater. (Basel). 5(12), 2874–2902 (2012). https://doi.org/10.3390/ma5122874

    Article  CAS  Google Scholar 

  39. G.C. Carvalho, G.D. Marena, J.C.F. Karnopp, J. Jorge, R.M. Sábio, M.A.U. Martines, T.M. Bauab, M. Chorilli, Adv. Colloid Interface Sci. 307, 102746 (2022). https://doi.org/10.1016/j.cis.2022.102746

    Article  CAS  PubMed  Google Scholar 

  40. A. Mal, S. Ghosh, S.P. Moulik, Colloids surf. A: Physicochem Eng. 617, 126328 (2021). https://doi.org/10.1016/j.colsurfa.2021.126328

    Article  CAS  Google Scholar 

  41. V.V. Annenkov, E.N. Danilovtseva, V.A. Pal’shin, O.N. Verkhozina, S.N. Zelinskiya, U.M. Krishnan, RSC Adv. 7, 20995–21027 (2017). https://doi.org/10.1039/c7ra01310h

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the funding from research program of the product of nuclear technological innovation 2023 (D3324), from Research Organization of Nuclear Power- National Research and Innovation Agency-Indonesia.

Author information

Authors and Affiliations

Authors

Contributions

M: Conceptualization, performed the experiments and analysis, wrote the main original draft. N.S: Data curation. W.Z.L: Performed the experiments. S.S: Data curation of SAXS. M.C.P: Supervision, writing - review. A.M: Writing - review, prepared figures. A.P: Data curation and analysis, writing - original draft and review.

Corresponding author

Correspondence to Muflikhah.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muflikhah, Suparno, N., Lbs, W.Z. et al. The impact of reaction time on the hierarchical structure of mesoporous silica synthesized via modified stöber method. J Porous Mater 31, 969–977 (2024). https://doi.org/10.1007/s10934-024-01574-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-024-01574-z

Keywords

Navigation