Skip to main content

Advertisement

Log in

In situ construction of porous Ni/Co-MOF@Carbon cloth electrode with honeycomb-like structure for high-performance energy storage

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Porous Ni/Co-organic framework with honeycomb-like structure was directly grown on the carbon cloth (Ni/Co-MOF@CC) through a hydrothermal process. The Ni/Co-MOF@CC displayed a high specific surface area with an average pore size of 3.05 nm and excellent conductivity. The electrochemical performances of the porous Ni/Co-MOF@CC as the electrode of supercapacitors were evaluated using cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 2 M KOH electrolyte. The Ni/Co-MOF@CC electrode exhibited a maximal specific capacity of 1180.5 mC cm−2 at 3 mA cm−2, good high-rate discharge ability (624.1 mC cm−2 at 60 mA cm−2), and long-term cycling life (97.6% capacity retention after 5000 cycles). Our experiments demonstrated the practical application of mixed-MOFs as supercapacitors for next-generation energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015)

    Article  CAS  PubMed  Google Scholar 

  2. X. Wang, Y. Yang, Y. Zhang, Q. Li, M. Gong, R. Zhang, S. Xiong, Facile synthesis and capacitance properties of N-doped porous carbon/iron oxide composites through the single-step pyrolysis of coal-based polyaniline. J. Porous Mater. 25, 845–853 (2018)

    Article  CAS  Google Scholar 

  3. N. Wang, H. Song, H. Ren, J. Chen, M. Yao, W. Huang, W. Hu, S. Komarneni, Partly nitrogenized nickel oxide hollow spheres with multiple compositions for remarkable electrochemical performance. Chem. Eng. J. 358, 531–539 (2019)

    Article  CAS  Google Scholar 

  4. K. Chen, D. Xue, Colloidal supercapattery: redox ions in electrode and electrolyte. Chem. Rec. 18, 282–292 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. Q. Zhang, K. Zhou, J. Lei, W. Hu, Nitrogen dual-doped porous carbon fiber: a binder-free and high-performance flexible anode for lithium ion batteries. Appl. Surf. Sci. 467, 992–999 (2019)

    Article  CAS  Google Scholar 

  6. C. Ma, R. Wang, Z. Xie, H. Zhang, Z. Li, J. Shi, Preparation and molten salt-assisted KOH activation of porous carbon nanofibers for use as supercapacitor electrodes. J. Porous Mater. 24, 1437–1445 (2017)

    Article  CAS  Google Scholar 

  7. S. Chen, S. Xiao, J. Liu, Z. Li, Synthesis and hydrogen storage properties of zirconium metal-organic frameworks UIO-66(H2ADC) with 9,10-anthracenedicarboxylic acid as ligand. J. Porous Mat. 25, 1783–1788 (2018)

    Article  CAS  Google Scholar 

  8. Y. An, Y. Liu, P. An, J. Dong, B. Xu, Y. Dai, X. Qin, X. Zhang, M.-H. Whangbo, B. Huang, NiII coordination to an Al-based metal-organic framework made from 2-aminoterephthalate for photocatalytic overall water splitting. Angew. Chem. Int. Ed. 56, 3036–3040 (2017)

    Article  CAS  Google Scholar 

  9. S. Zheng, X. Li, B. Yan, Q. Hu, Y. Xu, X. Xiao, H. Xue, H. Pang, Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv. Energy Mater. 7, 1602733 (2017)

    Article  CAS  Google Scholar 

  10. T.Q.N. Tran, G. Das, H.H. Yoon, Nickel-metal organic framework/MWCNT composite electrode for non-enzymatic urea detection. Sens. Actuators B 243, 78–83 (2017)

    Article  CAS  Google Scholar 

  11. K.M. Choi, H.M. Jeong, J.H. Park, Y.-B. Zhang, J.K. Kang, O.M. Yaghi, Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano 8, 7451–7457 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. L. Zhang, Y. Zhang, S. Huang, Y. Yuan, H. Li, Z. Jin, J. Wu, Q. Liao, L. Hu, J. Lu, S. Ruan, Y.-J. Zeng, Co3O4/Ni-based MOFs on carbon cloth for flexible alkaline battery-supercapacitor hybrid devices and near-infrared photocatalytic hydrogen evolution. Electrochim. Acta 281, 189–197 (2018)

    Article  CAS  Google Scholar 

  13. H. Gholipour-Ranjbar, M. Soleimani, H.R. Naderi, Application of Ni/Co-based metal-organic frameworks (MOFs) as an advanced electrode material for supercapacitors. New J. Chem. 40, 9187–9193 (2016)

    Article  CAS  Google Scholar 

  14. Y. Jia, G. Chen, D. Chen, J. Pei, Y. Hu, Bimetal-organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage. J. Mater. Chem. A 5, 23744–23752 (2017)

    Article  Google Scholar 

  15. Y. Jiao, J. Pei, D. Chen, C. Yan, Y. Hu, Q. Zhang, G. Chen, Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors. J. Mater. Chem. A 5, 1094–1102 (2017)

    Article  CAS  Google Scholar 

  16. Q. Chen, S. Lei, P. Deng, X. Ou, L. Chen, W. Wang, Y. Xiao, B. Cheng, Direct growth of nickel terephthalate on Ni foam with large mass-loading for high-performance supercapacitors. J. Mater. Chem. A 5, 19323–19332 (2017)

    Article  CAS  Google Scholar 

  17. Z. Jia, G. Wu, D. Wu, Z. Tong, W.S.W. Ho, Preparation of ultra-stable ZIF-8 dispersions in water and ethanol. J. Porous Mater. 24, 1655–1660 (2017)

    Article  CAS  Google Scholar 

  18. X. Liang, K. Chen, D. Xue, A flexible and ultrahigh energy density capacitor via enhancing surface/interface of carbon cloth supported colloids. Adv. Energy Mater. 8, 26 (2018)

    Google Scholar 

  19. P. Zhao, N. Wang, W. Hu, S. Komarneni, Anode electrodeposition of 3D mesoporous Fe2O3 nanosheets on carbon fabric for flexible solid-state asymmetric supercapacitor. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.02.101

    Article  Google Scholar 

  20. A. Eftekhari, Metrics for fast supercapacitors as energy storage devices. ACS Sustain. Chem. Eng. 7, 3688–3691 (2019)

    Article  CAS  Google Scholar 

  21. C. Qu, Y. Jiao, B. Zhao, D. Chen, R. Zou, K.S. Walton, M. Liu, Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy 26, 66–73 (2016)

    Article  CAS  Google Scholar 

  22. K. Chen, D. Xue, High energy density hybrid supercapacitor: in-situ functionalization of vanadium-based colloidal cathode. ACS Appl. Mater. Inter. 8, 29522–29528 (2016)

    Article  CAS  Google Scholar 

  23. C. Liu, C. Zhang, H. Song, C. Zhang, Y. Liu, X. Nan, G. Cao, Mesocrystal MnO cubes as anode for Li-ion capacitors. Nano Energy 22, 290–300 (2016)

    Article  CAS  Google Scholar 

  24. P.-Y. Tang, L.-J. Han, A. Genç, Y.-M. He, X. Zhang, L. Zhang, J.R. Galán-Mascarós, J.R. Moranteb, J. Arbiol, Synergistic effects in 3D honeycomb-like hematite nanoflakes/branched polypyrrole nanoleaves heterostructures as high-performance negative electrodes for asymmetric supercapacitors. Nano Energy 22, 189–201 (2016)

    Article  CAS  Google Scholar 

  25. M. Yao, N. Wang, W. Hu, S. Komarneni, Novel hydrothermal electrodeposition to fabricate mesoporous film of Ni0.8Fe0.2 nanosheets for high performance oxygen evolution reaction. Appl. Catal. B 233, 226–233 (2018)

    Article  CAS  Google Scholar 

  26. G. Zhu, C. Xi, M. Shen, C. Bao, J. Zhu, Nanosheet-based hierarchical Ni2(CO3)(OH)2 microspheres with weak crystallinity for high-performance supercapacitor. ACS Appl. Mater. Inter. 6, 17208–17214 (2014)

    Article  CAS  Google Scholar 

  27. P. Wen, P. Gong, J. Sun, J. Wang, S. Yang, Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J. Mater. Chem. A 3, 13874–13883 (2015)

    Article  CAS  Google Scholar 

  28. A. Policicchio, R. Filosa, S. Abate, G. Desiderio, E. Colavita, Activated carbon and metal organic framework as adsorbent for low-pressure methane storage applications: an overview. J. Porous Mater. 24, 905–922 (2017)

    Article  CAS  Google Scholar 

  29. J. Yang, C. Zheng, P. Xiong, Y. Lia, M. Wei, Zn-doped Ni-MOF material with a high supercapacitive performance. J. Mater. Chem. A 2, 19005–19010 (2014)

    Article  CAS  Google Scholar 

  30. A. Eftekhari, Energy efficiency: a critically important but neglected factor in battery research. Sustain. Energy Fuel 1, 2053–2060 (2017)

    Article  CAS  Google Scholar 

  31. M.S. Rahmanifara, H. Hesarib, A. Noorib, M.Y. Masoomib, A. Morsalib, M.F. Mousavi, A dual Ni/Co-MOF-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode material. Electrochim. Acta 275, 76–86 (2018)

    Article  CAS  Google Scholar 

  32. C. Ye, Q. Qin, J. Liu, W. Mao, J. Yan, Y. Wang, J. Cui, Q. Zhang, L. Yang, Y. Wu, Coordination derived stable Ni-Co MOF for foldable all-solid-state supercapacitor with high specific energy. J. Mater. Chem. A (2019). https://doi.org/10.1039/c8ta11948a

    Article  Google Scholar 

  33. K. Chen, D. Xue, Colloidal paradigm in supercapattery electrode systems. Nanotechnology 29, 024003 (2018)

    Article  CAS  PubMed  Google Scholar 

  34. N. Wang, C. Wang, L. He, Y. Wang, W. Hu, S. Komarneni, Incomplete phase separation strategy to synthesize P/N co-doped porous carbon with interconnected structure for asymmetric supercapacitors with ultra-high power density. Electrochim. Acta 298, 717–725 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ni Wang or Sridhar Komarneni.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, N., Hu, W. et al. In situ construction of porous Ni/Co-MOF@Carbon cloth electrode with honeycomb-like structure for high-performance energy storage. J Porous Mater 26, 921–929 (2019). https://doi.org/10.1007/s10934-019-00735-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00735-9

Keywords

Navigation