Skip to main content

Advertisement

Log in

Hierarchical Ni2P@Ni(OH)2 architectures supported on carbon cloth as battery-type electrodes for hybrid supercapacitors with boosting specific capacitance and cycle stability

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a novel binder-free electrode, in which three-dimensional porous Ni2P@Ni(OH)2 nanosheet arrays were in situ grown on carbon cloth (CC), is rationally designed for supercapacitor applications. In comparison with Ni2P@CC, the Ni2P@Ni(OH)2@CC electrode represents superior electrochemical characteristics: the gravimetric capacitance and areal capacitance are boosted to be 632 C g−1 and 0.73 C cm−2 at 1 mA cm−2, about 2 and 2.7 times larger than those of Ni2P@CC (321 C g−1 and 0.27 C cm−2), respectively; the rate capability is improved to be 63.3% from 1 to 10 mA cm−2, about 1.5 times larger than Ni2P@CC (42.9%); the cycle stability is enhanced to be 81.4% after 1000 cycles, about 1.6 times larger than Ni2P/CC (51.8%). The assembly Ni2P@Ni(OH)2@CC//AC hybrid supercapacitor device shows high energy density of 23.5 Wh kg−1 at a power density of 1158.0 W kg−1 and good cycling stability of 75.2% maintenance after 5000 cycles. Benefiting from the combined advantages of high electronic conductivity and large specific capacitance of Ni2P, superior anion exchanging/intercalating capacity of Ni(OH)2, excellent flexibility of carbon cloth, and special hierarchical architecture with large surface area, the Ni2P@Ni(OH)2@CC electrode is promised to be a good candidate for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.T. Zhang, X.S. Zhao, On the configuration of supercapacitors for maximizing electrochemical performance. Chemsuschem 5, 818–841 (2012)

    Article  CAS  Google Scholar 

  2. X.R. Li, J.L. Wei, Q. Li, S.S. Zheng, Y.X. Xu, P. Du, C.Y. Chen, J.J. Zhao, H.G. Xue, Q. Xu, H. Pang, Nitrogen-doped cobalt oxide nanostructures derived from cobalt-alanine complexes for high-performance oxygen evolution reactions. Adv. Funct. Mater. 28, 1800886 (2018)

    Article  CAS  Google Scholar 

  3. Y.H. Feng, S.H. Chen, J. Wang, B.A. Lu, Carbon foam with microporous structure for high performance symmetric potassium dual-ion capacitor. J. Energy Chem. 43, 129–138 (2020)

    Article  Google Scholar 

  4. X.R. Li, X.C. Yang, H.G. Xue, H. Pang, Q. Xu, Metal-organic frameworks as a platform for clean energy applications. EnergyChem. 2, 100027 (2020)

    Article  Google Scholar 

  5. X.Z. Yu, B.A. Lu, Z. Xu, Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO4-3D graphene hybrid electrodes. Adv. Mater. 26, 1044–1051 (2014)

    Article  CAS  Google Scholar 

  6. P. Poizot, F. Dolhem, Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ. Sci. 4, 2003 (2011)

    Article  CAS  Google Scholar 

  7. B.W. He, P.Y. Kuang, X.H. Li, H. Chen, J.G. Yu, K. Fan, In situ transformation of Prussian-blue analogue-derived bimetallic carbide nanocubes by water oxidation: applications for energy storage and conversion. Chem. Eur. J. 25, 1–12 (2019)

    Google Scholar 

  8. G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)

    Article  CAS  Google Scholar 

  9. C. Peng, S.W. Zhang, X.H. Zhou, G.Z. Chen, Unequalisation of electrode capacitances for enhanced energy capacity in asymmetrical supercapacitors. Energy Environ. Sci. 3, 1499–1502 (2010)

    Article  Google Scholar 

  10. G.Q. Zhang, H.B. Wu, H.E. Hoster, M.B. Chan-Park, X.W. (David) Lou, Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ. Sci. 5, 9453–9456 (2012)

    Article  CAS  Google Scholar 

  11. J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321, 651–652 (2008)

    Article  CAS  Google Scholar 

  12. W. Zhou, K. Yu, D. Wang, J. Chu, J. Li, L. Zhao, C. Ding, Y. Du, X. Jia, H. Wang, G. Wen, Hierarchically constructed NiCo2S4@Ni(1–x)Cox(OH)2 core/shell nanoarrays and their application in energy storage. Nanotechnology 27, 235402 (2016)

    Article  CAS  Google Scholar 

  13. S. Peng, L. Li, H.B. Wu, S. Madhavi, X.W. (David) Lou, Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv. Energy Mater. 5, 1401172 (2015)

    Article  CAS  Google Scholar 

  14. T. Liu, L.Y. Zhang, W. You, J.G. Yu, Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor. Small 14, 1702407 (2018)

    Article  CAS  Google Scholar 

  15. Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, H.J. Fan, Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 3, 1500286 (2016)

    Article  CAS  Google Scholar 

  16. E. Frackowiak, Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 1774–1785 (2007)

    Article  CAS  Google Scholar 

  17. Y. Wang, Y. Xia, Recent progress in supercapacitors: from materials design to system construction. Adv. Mater. 25, 5336–5342 (2013)

    Article  CAS  Google Scholar 

  18. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  CAS  Google Scholar 

  19. Y.Z. Hu, C.H. Huang, S.P. Jiang, Y.L. Qin, H. Chen, Hierarchical nickel-cobalt selenide nanoparticles/nanosheets as advanced electroactive battery materials for hybrid supercapacitors. J. Colloid Interface Sci. 558, 291–300 (2020)

    Article  CAS  Google Scholar 

  20. W.L. Hong, L.Y. Lin, Design of nickel cobalt oxide and nickel cobalt oxide@nickel molybdenum oxide battery-type materials for flexible solid-state battery supercapacitor hybrids. J. Power Sources 435, 226797 (2019)

    Article  CAS  Google Scholar 

  21. Y.M. Hu, M.C. Liu, Y.X. Hu, Q.Q. Yang, L.B. Kong, L. Kang, One-pot hydrothermal synthesis of porous nickel cobalt phosphides with high conductivity for advanced energy conversion and storage. Electrochim. Acta 215, 114–125 (2016)

    Article  CAS  Google Scholar 

  22. J. Wen, S.Z. Li, T. Chen, B. Li, L.B. Xiong, Y.X. Guo, G.J. Fang, Porous nanosheet network architecture of CoP@Ni(OH)2 composites for high performance supercapacitors. Electrochim. Acta 258, 266–273 (2017)

    Article  CAS  Google Scholar 

  23. X. Li, H. Wu, A.M. Elshahawy, L. Wang, S.J. Pennycook, C. Guan, J. Wang, Cactus-like NiCoP/NiCo-OH 3D architecture with tunable composition for high-performance electrochemical capacitors. Adv. Funct. Mater. 28, 1800036 (2018)

    Article  CAS  Google Scholar 

  24. S. Wang, Z. Xiao, S. Zhai, G. Wang, Q. An, D. Yang, A high-temperature phosphorization for synthesis of core-shell Ni-NixPy@C nanocomposite-immobilized sponge-like P-doped porous carbon with excellent supercapacitance performance. Electrochim. Acta 309, 197–208 (2019)

    Article  CAS  Google Scholar 

  25. Y. Xu, S. Hou, G. Yang, X. Wang, T. Lu, L. Pan, Synthesis of bimetallic NixCo1-xP hollow nanocages from metal-organic frameworks for high performance hybrid supercapacitors. Electrochim. Acta 285, 192–201 (2018)

    Article  CAS  Google Scholar 

  26. X. Li, A. MElshahawy, C. Guan, J. Wang, Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 13, 1701530 (2017)

    Article  CAS  Google Scholar 

  27. D. Wang, L.B. Kong, M.C. Liu, W.B. Zhang, Y.C. Luo, L. Kang, Amorphous Ni-P materials for high performance pseudocapacitors. J. Power Sources 274, 1107–1113 (2015)

    Article  CAS  Google Scholar 

  28. H. Wu, Y.H. Ni, M.F. Wang, D.C. Lu, Shape-controlled synthesis and performance comparison of Ni2P nanostructures. CrystEngComm 18, 5155–5163 (2016)

    Article  CAS  Google Scholar 

  29. J.L. Xing, J. Du, X. Zhang, Y.B. Shao, T. Zhang, C.L. Xu, A Ni-P@NiCo LDH core-shell nanorod-decorated nickel foam with enhanced areal specific capacitance for high-performance supercapacitors. Dalton Trans. 46, 10064 (2017)

    Article  CAS  Google Scholar 

  30. Y. Cheng, Y.F. Zhang, H.M. Jiang, X.Y. Dong, J.Q. Zheng, C.G. Meng, Synthesis of amorphous cobalt silicate nanobelts@manganese silicate core-shell structures as enhanced electrode for high-performance hybrid supercapacitors. J. Colloid Interface Sci. 561, 762–771 (2020)

    Article  CAS  Google Scholar 

  31. M. Racik, A. Manikandan, M. Mahendiran, J. Madhavana, M.V. Antony Raj, M.G. Mohamed, T. Maiyalagan, Hydrothermal synthesis and characterization studies of α-Fe2O3/MnO2 nanocomposites for energy storage supercapacitor application. Ceram. Int. 46, 6222–6233 (2020)

    Article  CAS  Google Scholar 

  32. Y.H. Tian, L.Y. Lin, M.L. Ning, S. Hussain, H. Su, M.S. Javed, H.J. Zhen, N. Hu, A. Shaheen, Novel binder-free electrode of NiCo2O4@NiMn2O4 core-shell arrays modified carbon fabric for enhanced electrochemical properties. Ceram. Int. 45, 16904–16910 (2019)

    Article  CAS  Google Scholar 

  33. T.F. Yi, J. Mei, B.L. Guan, P. Cui, S.H. Luo, Y. Xie, Y.G. Liu, Construction of spherical NiO@MnO2 with core-shell structure obtained by depositing MnO2 nanoparticles on NiO nanosheets for high-performance supercapacitor. Ceram. Int. 46, 421–429 (2020)

    Article  CAS  Google Scholar 

  34. X. Gao, Y. Zhao, K. Dai, J. Wang, B. Zhang, X. Shen, NiCoP nanowire@NiCo-layered double hydroxides nanosheet heterostructure for flexible asymmetric supercapacitors. Chem. Eng. J. 384, 123373 (2020)

    Article  CAS  Google Scholar 

  35. Z. Ma, F. Jing, Y. Fan, L. Hou, L. Su, L. Fan, G. Shao, High-stability MnOx nanowires@C@MnOx nanosheet core-shell heterostructure pseudocapacitance electrode based on reversible phase transition mechanism. Small 15, 1900862 (2019)

    Article  CAS  Google Scholar 

  36. J. Yang, C. Yu, X. Fan, J. Qiu, 3D Architecture materials made of NiCoAl-LDH nanoplates coupled with NiCo-carbonate hydroxide nanowires grown on flexible graphite paper for asymmetric supercapacitors. Adv. Energy Mater. 4, 1400761–1400769 (2014)

    Article  CAS  Google Scholar 

  37. Z. Lu, W. Zhu, X. Lei, G.R. Williams, D. O’Hare, Z. Chang, X. Sun, X. Duan, High pseudocapacitive cobalt carbonate hydroxide films derived from CoAl layered double hydroxides. Nanoscale 4, 3640–3643 (2012)

    Article  CAS  Google Scholar 

  38. S.C. Sekhar, G. Nagaraju, J.S. Yu, Conductive silver nanowires-fenced carbon cloth fibers-supported layered double hydroxide nanosheets as a flexible and binder-free electrode for high-performance asymmetric supercapacitors. Nano Energy 36, 58–67 (2017)

    Article  CAS  Google Scholar 

  39. D.D. Wei, Y.L. Zhang, X.Z. Zhu, M.L. Fan, Y.L. Wang, CNT/Co3S4@NiCo LDH ternary nanocomposites as battery-type electrode materials for hybrid supercapacitors. J. Alloys Compd. 824, 153937 (2019)

    Article  CAS  Google Scholar 

  40. J. Wang, Q. Zhong, Y.Q. Zeng, D.Y. Cheng, Y.G. Xiong, Y.F. Bu, Rational construction of triangle-like nickel-cobalt bimetallic metal-organic framework nanosheets arrays as battery-type electrodes for hybrid supercapacitors. J. Colloid Interface Sci. 555, 42–52 (2019)

    Article  CAS  Google Scholar 

  41. H.C. Chen, S.P. Jiang, B.H. Xu, C.H. Huang, Y.Z. Hu, Y.L. Qin, M.X. He, H.J. Cao, Sea-urchin-like nickel-cobalt phosphide/phosphate composites as advanced battery materials for hybrid supercapacitors. J. Mater. Chem. A 7, 6241 (2019)

    Article  CAS  Google Scholar 

  42. C.X. Zhou, T.T. Gao, Y.J. Wang, Q.L. Liu, D. Xiao, Through a hydrothermal phosphatization method synthesized NiCo and Fe based electrodes for high-performance battery-supercapacitor hybrid device. Appl. Surf. Sci. 475, 729–739 (2019)

    Article  CAS  Google Scholar 

  43. B.B. Cheng, W. Zhang, M. Yang, Y.J. Zhang, F.B. Meng, Preparation and study of porous MnCo2O4@NiO nanosheets for high-performance supercapacitor. Ceram. Int. 45, 20451–20457 (2019)

    Article  CAS  Google Scholar 

  44. X.J. Zhang, S.J. Hou, Z.B. Ding, G. Zhu, H.R. Tang, Y.C. Hou, T. Lu, L.K. Pan, Carbon wrapped CoP hollow spheres for high performance hybrid supercapacitor. J. Alloys Compd. 822, 153578 (2019)

    Article  CAS  Google Scholar 

  45. H.J. Zhang, X.P. Li, A. Hähnel, V. Naumann, C. Lin, S. Azimi, S.L. Schweizer, A.W. Maijenburg, R.B. Wehrspohn, Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv. Funct. Mater. 28, 1706847 (2018)

    Article  CAS  Google Scholar 

  46. Q. Zong, H. Yang, Q.Q. Wang, Q.L. Zhang, Y.L. Zhu, H.Y. Wang, Q.H. Shen, Three-dimensional coral-like NiCoP@C@Ni(OH)2 core-shell nanoarrays as battery-type electrodes to enhance cycle stability and energy density for hybrid supercapacitors. Chem. Eng. J. 361, 1–11 (2019)

    Article  CAS  Google Scholar 

  47. D. Wang, L.B. Kong, M.C. Liu, Y.C. Luo, L. Kang, An approach to preparing Ni-P with different phases for use as supercapacitor electrode materials. Chem. Eur. J. 21, 17897–17903 (2015)

    Article  CAS  Google Scholar 

  48. X.D. Li, R. Ding, W. Shi, Q.L. Xu, L. Wang, H.X. Jiang, Z. Yang, E.H. Liu, Hierarchical mesoporous Ni-P@MnO2 composite for high performance supercapacitors. Mater. Lett. 187, 144–147 (2017)

    Article  CAS  Google Scholar 

  49. Z. Hu, Z.M. Liu, J.G. Zhao, X.Z. Yu, B.A. Lu, Rose-petals-derived hemispherical micropapillae carbon with cuticular folds for super potassium storage. Electrochim. Acta 368, 137629 (2021)

    Article  CAS  Google Scholar 

  50. S.S. Zheng, Q. Li, H.G. Xue, H. Pang, Q. Xu, A highly alkaline-stable metal oxide@metal-organic framework composite for high-performance electrochemical energy storage. Natl. Sci. Rev. 7, 305–314 (2020)

    Article  CAS  Google Scholar 

  51. S.S. Zheng, X.T. Guo, H.G. Xue, K.M. Pan, C.S. Liu, H. Pang, Facile one-pot generation of metal oxide/hydroxide@metal organic framework composites: highly efficient bifunctional electrocatalysts for overall water splitting. ChemComm 55, 10904–10907 (2019)

    CAS  Google Scholar 

  52. X. Wang, Y. Fang, B. Shi, F. Huang, F. Rong, R. Que, Three-dimensional NiCo2O4@NiCo2O4 core-shell nanocones arrays for high-performance supercapacitors. Chem. Eng. J. 344, 311–319 (2018)

    Article  CAS  Google Scholar 

  53. Y.Y. Lan, H.Y. Zhao, Y. Zong, X.H. Li, Y. Sun, J. Feng, Y. Wang, X.L. Zheng, Y.P. Du, Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale 10, 11775–11781 (2018)

    Article  CAS  Google Scholar 

  54. N. Feng, R.J. Meng, L.H. Zu, Y.T. Feng, C.X. Peng, J.M. Huang, G.L. Liu, B.J. Chen, J.H. Yang, A polymer-direct-intercalation strategy for MoS2/carbon-derived heteroaerogels with ultrahigh pseudocapacitance. Nat. Commun. 10, 1372 (2019)

    Article  CAS  Google Scholar 

  55. H.B. Ding, J. Zhou, A.M. Rao, B.A. Lu, Cell-like-carbon-micro-spheres for robust potassium anode. Natl. Sci. Rev. (2020). https://doi.org/10.1093/nsr/nwaa276

    Article  Google Scholar 

  56. K. Zhou, W.J. Zhou, L.J. Yang, J. Lu, S. Cheng, W.J. Mai, Z.H. Tang, L.G. Li, S.W. Chen, Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: a general and effective approach. Adv. Funct. Mater. 25, 7530–7538 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51572218), Natural Science Foundation of Shaanxi Province (2017KCT-01, 2019JM-138), Scientific Research Program Funded by Shaanxi Provincial Education Department (18JK0786), Young Talent Fund of University Association for Science and Technology in Shaanxi (20170605), and Key Project of Research and Development of Shaanxi Province (2018ZDCXL-GY-08-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinliang Zheng.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1422 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, Y., Xing, H., Zong, Y. et al. Hierarchical Ni2P@Ni(OH)2 architectures supported on carbon cloth as battery-type electrodes for hybrid supercapacitors with boosting specific capacitance and cycle stability. J Mater Sci: Mater Electron 32, 7973–7986 (2021). https://doi.org/10.1007/s10854-021-05521-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05521-5

Navigation