Skip to main content
Log in

Effect of pretreatment temperature on the surface modification of diatomite with trimethylchlorosilane

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Diatomite samples from Costa Rica were purified using acidic treatments with hydrochloric acid, thermally treated (400–1000 °C) and then silylated with trimethylchlorosilane in toluene under inert atmosphere. The purification process allows to decrease the concentration of metals presented in the crude diatomite, as is confirmed by X-ray Fluorescence (XRF) Analysis. The silylated materials were analyzed by using Hyperpolarized 129Xe Nuclear Magnetic Resonance Spectroscopy (HP 129Xe NMR), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA), rehydration tests, and contact angle measurements. XRD measurements indicate that diatomite is mainly amorphous, but presents several crystalline phases (kaolinite, cristobalite, and quartz). Pretreatments at high temperatures cause changes in those crystalline phases, resulting in more amorphous materials. However, there is no difference in the overall structure of purified and thermally treated diatomite samples with respect to the silylation products. In addition, SEM measurements show no effect over the pore structure of the materials. On the other hand, TGA measurements and rehydration tests show lower losses of water for silylated materials prepared using higher pretreatment temperatures. Moreover, HP 129Xe NMR, FTIR, and contact angle measurements evidence a modification due to covalent attachment of Si(CH3)3-groups to the surface, which increases for higher pretreatment temperatures. The results provide valuable information about external factors that influence the surface modification of diatomite. This can be useful to control modifications that can be achieved in a similar way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E.F. Stoermer, J.P. Smol, The Diatoms: Applications for the Environmental and Earth Sciences (Cambridge University Press, Cambridge, 2001), pp. 436–443

    Google Scholar 

  2. P. Yuan, D. Yang, Z. Lin, H. He, X. Wen, L. Wang, F. Deng, J. Non-Cryst. Solids 352, 3762 (2006)

    Article  CAS  Google Scholar 

  3. P. Yuan, D.Q. Wu, H.P. He, Z.Y. Lin, Appl. Surf. Sci. 227, 30 (2004)

    Article  CAS  Google Scholar 

  4. U.S Department of the Interior, U.S. Geological Survey, Mineral Commodity Summaries 2014 (U.S. Geological Survey, Virginia, 2014), p. 53

  5. A. Michels, Rev. Biol. Trop. 46, 143 (1998)

    Google Scholar 

  6. A. Alfaro, Ciencia y Tecnología 25, 83 (2007)

    Google Scholar 

  7. K.R. Engh, Diatomite, in Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, New York 2014), pp. 1–11. doi:10.1002/0471238961.0409012005140708.a01.pub2

  8. J.X. Lin, S.L. Zhan, M.H. Fang, X.Q. Qian, J. Porous Mater. 14, 449 (2007)

    Article  CAS  Google Scholar 

  9. M. Sakuma, S. Hori, T. Hayashida, S. Mayama, K. Umemura, J. Porous Mater. 20, 961 (2013)

    Article  CAS  Google Scholar 

  10. J.P. Berrangé, S.J. Mathers, Rev. Geol. Am. Central 11, 85 (1990)

    Google Scholar 

  11. S. Mathers, Rev. Geol. Am. Central 10, 3 (1989)

    Google Scholar 

  12. Instituto Geológico y Minero de España, Diatomita y Trípoli (Instituto Geológico y Minero de España, Madrid, 2012), p. 4. http://www.igme.es/PanoramaMinero/Historico/2012/diatomita12.pdf

  13. K.K. Unger, Porous Silica: Its Properties and Use as Support in Column Liquid Chromatography (Elsevier Scientific Publishing Company, Amsterdam, 1979), pp. 57–83

    Google Scholar 

  14. L.T. Zhuravlev, Colloid. Surface A 173, 1 (2000)

    Article  CAS  Google Scholar 

  15. T. Takei, K. Kato, A. Meguro, M. Chikazawa, Colloid. Surface A 150, 77 (1999)

    Article  CAS  Google Scholar 

  16. N.R.E. Impens, P. van der Voort, E.F. Vansant, Micropor. Mesopor. Mater. 28, 217 (1999)

    Article  CAS  Google Scholar 

  17. S. Ek, A. Root, M. Peussa, L. Niinisto, Thermochim. Acta 379, 201 (2001)

    Article  CAS  Google Scholar 

  18. J.B. Peri, A.L. Henseley Jr., J. Phys. Chem. 72, 2926 (1968)

    Article  CAS  Google Scholar 

  19. R.K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (Wiley, New York, 1979), pp. 622–729

    Google Scholar 

  20. D.W. Sindorf, G.E. Maciel, J. Am. Chem. Soc. 103, 4263 (1981)

    Article  CAS  Google Scholar 

  21. J.W. Goodwin, R.S. Harbron, P.A. Reynolds, Colloid Polym. Sci. 777, 766 (1990)

    Article  Google Scholar 

  22. P. Van Der Voort, I. Gillis-D’Hamers, E.F. Vansant, J. Chem. Soc. Faraday Trans. 86, 3751 (1990)

    Article  Google Scholar 

  23. P. Van Der Voort, E.F. Vansant, J. Liq. Chromatogr. Relat. Technol. 19, 2723 (1996)

    Article  Google Scholar 

  24. P.K. Jal, S. Patel, B.K. Mishra, Talanta 62, 1005 (2004)

    Article  CAS  Google Scholar 

  25. A.V. Rao, S.S. Latthe, S.L. Dhere, S.S. Pawar, H. Imai, V. Ganesan, S.C. Gupta, P.B. Wagh, Appl. Surf. Sci. 256, 2115 (2010)

    Article  CAS  Google Scholar 

  26. T. Deschner, Y. Liang, R. Anwander, J. Phys. Chem. C 114, 22603 (2010)

    Article  CAS  Google Scholar 

  27. A.M. Fidalgo, L.M. Ilharco, Micropor. Mesopor. Mat. 158, 39 (2012)

    Article  CAS  Google Scholar 

  28. P. Huttenloch, K.E. Roehl, K. Czurda, Environ. Sci. Technol. 35, 4260 (2001)

    Article  CAS  Google Scholar 

  29. X. Li, C. Bian, W. Chen, J. He, Z. Wang, N. Xu, G. Xue, Appl. Surf. Sci. 207, 378 (2003)

    Article  CAS  Google Scholar 

  30. X. Qi, M. Liu, Z. Chen, R. Liang, Polym. Adv. Technol. 18, 184 (2007)

    Article  CAS  Google Scholar 

  31. X. Li, X. Li, G. Wang, Mater. Chem. Phys. 102, 140 (2007)

    Article  CAS  Google Scholar 

  32. I. Ruggiero, M. Terracciano, N.M. Matcucci, L. De Stefano, N. Migliaccio, R. Tatè, I. Rendina, P. Arcari, A. Lamberti, I. Rea, Nanoscale Res. Lett. 9, 1 (2014)

    Article  CAS  Google Scholar 

  33. N.M. Oliveira, R.L. Reis, J.F. Mano, A.C.S. Appl, Mater. Interfaces 5, 4202 (2013)

    Article  CAS  Google Scholar 

  34. P. Yuan, D. Liu, D. Tan, K. Liu, H. Yu, Y. Zhong, A. Yuan, W. Yu, H. He, Micropor. Mesopor. Mat. 170, 9 (2013)

    Article  CAS  Google Scholar 

  35. M. Aivalioti, P. Papoulias, A. Kousaiti, E. Gidarakos, J. Hazard. Mater. 207–208, 117 (2012)

    Article  Google Scholar 

  36. M. Aivalioti, I. Vamvasakis, E. Gidarakos, J. Hazard. Mater. 178, 136 (2010)

    Article  CAS  Google Scholar 

  37. V.I. Lygin, Russ. J. Gen. Chem. 71, 1368 (2001)

    Article  CAS  Google Scholar 

  38. Q. Zeng, J.F. Stebbins, A.D. Heaney, T. Erdogan, J. Non-Cryst. Solids 258, 78 (1999)

    Article  CAS  Google Scholar 

  39. P. Yuan, H.P. He, D.Q. Wu, D.Q. Wang, L.J. Chen, Spectrochim. Acta A 60, 2941 (2004)

    Article  CAS  Google Scholar 

  40. B. Humbert, J. Non-Cryst, Solids 191, 29 (1995)

    CAS  Google Scholar 

  41. C.E. Bronnimann, R.C. Zeigler, G.E. Maciel, J. Am. Chem. Soc. 110, 2023 (1988)

    Article  CAS  Google Scholar 

  42. A. Tuel, H. Hommel, A.P. Legrand, Langmuir 6, 770 (1990)

    Article  CAS  Google Scholar 

  43. C.C. Liu, G.E. Maciel, J. Am. Chem. Soc. 118, 5103 (1996)

    Article  CAS  Google Scholar 

  44. A.P. Legrand, H. Hommel, J.B. dʼEspinose de la Caillerie, Colloid Surface A 158, 157 (1999)

    Article  CAS  Google Scholar 

  45. H. Günther, S. Oepen, M. Ebener, V. Francke, Magn. Reson. Chem. 37, S142 (1999)

    Article  Google Scholar 

  46. F. Garbassi, L. Balducci, P. Chiurlo, L. Deiana, Appl. Surf. Sci. 84, 145 (1995)

    Article  CAS  Google Scholar 

  47. F. Bauer, A. Freyer, H. Ernst, H.-J. Gläsel, R. Mehnert, Appl. Surf. Sci. 179, 118 (2001)

    Article  CAS  Google Scholar 

  48. S. Azizi, T. Tajouri, H. Bouchriha, Polymer 41, 5921 (2000)

    Article  CAS  Google Scholar 

  49. H. Aderdour, A. Bentayeb, A. Nadiri, A. Ouammou, J.-C. Sangleboeuf, A. Lucas-Girot, C. Carel, J. Phys. IV 123, 361 (2005)

    CAS  Google Scholar 

  50. K. Rangsriwatananon, A. Chaisena, C. Thongkasam, J. Porous Mater. 15, 499 (2008)

    Article  CAS  Google Scholar 

  51. O.R. Lazutkina, A.K. Kazak, A.A. Temereva, S.O. Nedopolz, Glass Ceram. 63, 97 (2006)

    Article  CAS  Google Scholar 

  52. H. Mohamedbakr, M. Burkitbaev, Open Mineral. J. 3, 12 (2009)

    Article  CAS  Google Scholar 

  53. W. Tsai, C. Lai, K. Hsien, J. Colloid Interface Sci. 297, 749 (2006)

    Article  CAS  Google Scholar 

  54. S. Nenadovic, M. Nenadovic, R. Kovacevic, L. Matovic, B. Matovic, Z. Jovanovic, J.G. Novakovic, Sci. Sinter. 41, 309 (2009)

    Article  CAS  Google Scholar 

  55. W. Xiong, J. Peng, Water Res. 42, 4869 (2008)

    Article  CAS  Google Scholar 

  56. Y. Al-Degs, M.A.M. Khraisheh, M.F. Tutunji, Water Res. 35, 3724 (2001)

    Article  CAS  Google Scholar 

  57. O. Şan, R. Gören, C. Özgür, Int. J. Miner. Process. 93, 6 (2009)

    Article  Google Scholar 

  58. X.S. Zhao, G.Q. Lu, A.K. Whittaker, G.J. Millar, H.Y. Zhu, J. Phys. Chem. B 101, 6525 (1997)

    Article  CAS  Google Scholar 

  59. X.S. Zhao, G.Q. Lu, J. Phys. Chem. B 102, 1556 (1998)

    Article  CAS  Google Scholar 

  60. I.L. Moudrakovski, V.V. Terskikh, C.I. Ratcliffe, J.A. Ripmeester, L. Wang, Y. Shin, G.J. Exarhos, J. Phys. Chem. B 106, 5938 (2002)

    Article  CAS  Google Scholar 

  61. V.V. Terskikh, I.L. Moudrakovski, S.R. Breeze, S. Lang, C.I. Ratcliffe, J.A. Ripmeester, A. Sayari, Langmuir 18, 5653 (2002)

    Article  CAS  Google Scholar 

  62. A. Nossov, E. Haddad, F. Guenneau, A. Galarneau, F. Di Renzo, F. Fajula, A. Gédéon, J. Phys. Chem. B 107, 12456 (2003)

    Article  CAS  Google Scholar 

  63. S. Huang, C. Huang, W. Chen, X. Sun, X. Zeng, H. Lee, J.A. Ripmeester, C. Mou, S. Liu, J. Phys. Chem. B 109, 681 (2005)

    Article  CAS  Google Scholar 

  64. Y. Mao, M. Song, R. Hopson, N.K. Karan, P.R. Guduru, L. Wang, Energy Fuels 30, 1470 (2016)

    Article  CAS  Google Scholar 

  65. S. Anala, G.E. Pavlovskaya, P. Pichumani, T.J. Dieken, M.D. Olsen, T. Meersmann, J. Am. Chem. Soc. 125, 13298 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Vicerrectoría de Investigación (Grant: 115-A9-062) and the Sistema de Estudios de Posgrado of the Universidad de Costa Rica for supporting the research reported in this article. Thanks are also given to Claudia Chaves for her support with the SEM analyses, to Jorge Salazar for performing the TGA analyses, to Dr. Matthias Findeisen for technical support during the NMR experiments, and to Prof. W. D. Einicke for the BET analyses. Prof. Stefan Berger is acknowledged for helpful discussions. Thanks are also given for the valuable comments made by the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grettel Valle-Bourrouet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puente-Urbina, A., Hollenbach, J., Céspedes-Camacho, I.F. et al. Effect of pretreatment temperature on the surface modification of diatomite with trimethylchlorosilane. J Porous Mater 23, 1439–1449 (2016). https://doi.org/10.1007/s10934-016-0204-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0204-1

Keywords

Navigation