Skip to main content
Log in

Facile Synthesis of BiOCl Incorporated Polymer Membrane for Effective Photocatalytic Dye Degradation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, a novel and efficient bismuth oxychloride (BiOCl) incorporated cellulose acetate/chitosan (CA/CS) hybrid structure was fabricated using a simple and affordable hydrothermal synthesis method. X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy (FE-SEM), and UV-DRS have been employed to investigate the phase, structural, morphological, and optical properties of CA/CS/BiOCl nanocomposite membrane. The photocatalytic activity of synthesized nanocomposite membrane was investigated through the degradation of Methylene blue (MB) and Crystal Violet (CV) under UV light irradiation. The outcomes have demonstrated that after being exposed to UV light, the CA/CS/BiOCl has the potential to be a highly effective photocatalyst for degrading both organic pollutants such as MB and CV. Most importantly, after 60 min of UV light irradiation, both dyes (MB, CV) were removed with percentages of 79.9 and 85%, respectively. The photocatalytic degradation of both organic dyes (MB, CV) followed first-order kinetics, with average rate constants of 0.0258 and 0.0232 min−1, respectively. The major reactive species involved in pollutant degradation are electrons and holes. Even after three cycles of usage, the synthesized BiOCl retains its photocatalytic efficacy. This investigation fits into the scope of the exploration and development of affordable green-oriented nanomaterials for advanced (waste) water treatments. Based on the results of experiments, a putative photocatalytic mechanism was hypothesized.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dong S, Feng J, Fan M, Pi Y, Hu L, Han X, Liu M, Sun J, Sun J (2015) Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Adv 5:14610–14630

    Article  CAS  Google Scholar 

  2. Rueda-Marquez JJ, Levchuk I, Fernández Ibañez P, Sillanpää M (2020) A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J Clean Prod 258:120694

    Article  CAS  Google Scholar 

  3. Melchionna M, Fornasiero P (2020) Updates on the roadmap for photocatalysis. ACS Catal 10:5493–5501

    Article  CAS  Google Scholar 

  4. Slama HB, Chenari Bouket A, Pourhassan Z, Alenezi FN, Silini A, Cherif-Silini H, Oszako T, Luptakova L, Golińska P, Belbahri L (2021) Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Appl Sci 11:6255

    Article  CAS  Google Scholar 

  5. Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YAG, Elsamahy T, Jiao H, Fu Y, Sun J (2022) A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf 231:113160

    Article  CAS  PubMed  Google Scholar 

  6. Cui B, Fu S, Hao X, Zhou D (2023) Synergistic effects of simultaneous coupling ozonation and biodegradation for coking wastewater treatment: advances in COD removal, toxic elimination, and microbial regulation. Chemosphere 318:137956

    Article  CAS  PubMed  Google Scholar 

  7. Wang S, Hanna D, Sugamori KS, Grant DM (2019) Primary aromatic amines and cancer: Novel mechanistic insights using 4-aminobiphenyl as a model carcinogen. Pharmacol Ther 200:179–189

    Article  CAS  PubMed  Google Scholar 

  8. Zhu D, Zhou Q (2019) Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: a review. Environ Nanatechnol Monit Manag 12:100255

    Google Scholar 

  9. Parul K, Kaur R, Badru PP, Singh S, Kaushal (2020) Photodegradation of organic pollutants using heterojunctions: a review. J Environ Chem Eng 8:103666

    Article  CAS  Google Scholar 

  10. Wang C-C, Li J-R, Lv X-L, Zhang Y-Q, Guo G (2014) Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy Environ Sci 7:2831–2867

    Article  CAS  Google Scholar 

  11. Pavel M, Anastasescu C, State R-N, Vasile A, Papa F, Balint I (2023) Photocatalytic degradation of organic and inorganic pollutants to harmless end products. Assess Pract Appl Pot Water Air Clean 13(2):380

    CAS  Google Scholar 

  12. Malefane ME, Mafa PJ, Managa M, Nkambule TTI, Kuvarega AT (2023) Understanding the principles and applications of Dual Z-Scheme heterojunctions: how far can we go? J Phys Chem Lett 14:1029–1045

    Article  CAS  PubMed  Google Scholar 

  13. Wei X, Li J, Liu Z, Yang X, Naraginti S, Xu X, Wang X (2018) Visible light photocatalytic mineralization of 17α-ethinyl estradiol (EE2) and hydrogen evolution over silver and strontium modified TiO2 nanoparticles: mechanisms and phytotoxicity assessment. RSC Adv 8:4329–4339

    Article  CAS  Google Scholar 

  14. Malefane ME, Feleni U, Kuvarega AT (2019) A tetraphenylporphyrin/WO3/exfoliated graphite nanocomposite for the photocatalytic degradation of an acid dye under visible light irradiation. New J Chem 43:11348–11362

    Article  CAS  Google Scholar 

  15. Sudhaik A, Raizada P, Shandilya P, Jeong D-Y, Lim J-H, Singh P (2018) Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants. J Ind Eng Chem 67:28–51

    Article  CAS  Google Scholar 

  16. Edwin Malefane M, John Mafa P, Thokozani Innocent Nkambule T, Elizabeth Managa M, Tawanda A, Kuvarega (2023) Modulation of Z-scheme photocatalysts for pharmaceuticals remediation and pathogen inactivation: design devotion, concept examination, and developments. Chem Eng J 452:138894

    Article  CAS  PubMed  Google Scholar 

  17. Kumar Y, Sudhaik A, Sharma K, Sonu P, Raizada A, Aslam Parwaz Khan V-H, Nguyen T, Ahamad P, Singh AM, Asiri (2023) Construction of magnetically separable novel arrow down dual S-scheme ZnIn2S4/BiOCl/FeVO4 heterojunction for improved photocatalytic activity. J Photochem Photobiol A 435:114326

    Article  CAS  Google Scholar 

  18. Naraginti S, Yu Y-Y, Fang Z, Yong Y-C (2019) Novel tetrahedral Ag3PO4@N-rGO for photocatalytic detoxification of sulfamethoxazole: process optimization, transformation pathways and biotoxicity assessment. Chem Eng J 375:122035

    Article  CAS  Google Scholar 

  19. Kumar R, Sudhaik A, Sonu V-H, Nguyen Q, Van Le T, Ahamad S, Thakur N, Kumar CM, Hussain P, Singh P, Raizada (2023) Graphene oxide modified K, P co-doped g-C3N4 and CoFe2O4 composite for photocatalytic degradation of antibiotics. J Taiwan Inst Chem Eng 150:105077

    Article  CAS  Google Scholar 

  20. Dhull P, Sudhaik A, Sharma V, Raizada P, Hasija V, Gupta N, Ahamad T, Nguyen V-H, Kim A, Shokouhimehr M, Kim SY, Le QV, Singh P (2023) An overview on InVO4-based photocatalysts: electronic properties, synthesis, enhancement strategies, and photocatalytic applications. Mol Catal 539:113013

    Article  CAS  Google Scholar 

  21. Zhang F, Wang X, Liu H, Liu C, Wan Y, Long Y, Cai Z (2019) Recent advances and applications of semiconductor photocatalytic technology. Appl Sci 9:2489

    Article  CAS  Google Scholar 

  22. Serpone N, Emeline AV (2012) Semiconductor photocatalysis—past, present, and future outlook. J Phys Chem Lett 3:673–677

    Article  CAS  PubMed  Google Scholar 

  23. Tang R, Su H, Sun Y, Zhang X, Li L, Liu C, Wang B, Zeng S, Sun D (2016) Facile fabrication of Bi2WO6/Ag2S heterostructure with enhanced visible-light-driven photocatalytic performances. Nanoscale Res Lett 11:126

    Article  PubMed  PubMed Central  Google Scholar 

  24. Malefane ME (2020) Co3O4/Bi4O5I2/Bi5O7I C-Scheme heterojunction for degradation of organic pollutants by light-emitting diode irradiation. ACS Omega 5:26829–26844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Akbarzadeh R, Asadi A, Oviroh PO, Jen TC (2019) One-pot synthesized visible light-driven BiOCl/AgCl/BiVO(4) n-p heterojunction for photocatalytic degradation of pharmaceutical pollutants. Mater (Basel) 12(14):2297

    Article  CAS  Google Scholar 

  26. Chawla A, Sudhaik A, Sonu P, Raizada T, Ahamad QV, Le V-H, Nguyen S, Thakur AK, Mishra R, Selvasembian P, Singh (2023) Bi-rich BixOyBrz-based photocatalysts for energy conversion and environmental remediation: a review. Coord Chem Rev 491:215246

    Article  CAS  Google Scholar 

  27. Naraginti S, Sathishkumar K, Zhang F, Liu X (2023) Fabrication of novel BiPO4/Ag3PO4@rGO hybrid composite for effective detoxification of tetracycline. Environ Res 223:115407

    Article  CAS  PubMed  Google Scholar 

  28. Yang X, Xu Y, Naraginti S, Wei X (2023) Enhanced sulfamethazine detoxification by a novel BiOCl (110)/NrGO/BiVO4 heterojunction. Environ Res 232:116351

    Article  CAS  PubMed  Google Scholar 

  29. Li J, Li Y, Wu H, Naraginti S, Chen P, Chen Y (2022) A novel BiOCl (110)/rGO/Ag3PO4 (111) heterostructure for efficient detoxification of 2,4-dichlorophenol. Chemosphere 309:136616

    Article  CAS  PubMed  Google Scholar 

  30. Malefane ME, Feleni U, Mafa PJ, Kuvarega AT (2020) Fabrication of direct Z-scheme Co3O4/BiOI for ibuprofen and trimethoprim degradation under visible light irradiation. Appl Surf Sci 514:145940

    Article  CAS  Google Scholar 

  31. Tan C, Zhu G, Hojamberdiev M, Okada K, Liang J, Luo X, Liu P, Liu Y (2014) Co3O4 nanoparticles-loaded BiOCl nanoplates with the dominant {001} facets: efficient photodegradation of organic dyes under visible light. Appl Catal B 152:425–436

    Article  Google Scholar 

  32. Huang C, Hu J, Cong S, Zhao Z, Qiu X (2015) Hierarchical BiOCl microflowers with improved visible-light-driven photocatalytic activity by Fe(III) modification. Appl Catal B 174:105–112

    Article  Google Scholar 

  33. Deng F, Zhang Q, Yang L, Luo X, Wang A, Luo S, Dionysiou DD (2018) Visible-light-responsive graphene-functionalized bi-bridge Z-scheme black BiOCl/Bi2O3 heterojunction with oxygen vacancy and multiple charge transfer channels for efficient photocatalytic degradation of 2-nitrophenol and industrial wastewater treatment. Appl Catal B 238:61–69

    Article  CAS  Google Scholar 

  34. Meribout R, Zuo Y, Khodja AA, Piram A, Lebarillier S, Cheng J, Wang C, Wong-Wah-Chung P (2016) Photocatalytic degradation of antiepileptic drug carbamazepine with bismuth oxychlorides (BiOCl and BiOCl/AgCl composite) in water: efficiency evaluation and elucidation degradation pathways. J Photochem Photobiol A 328:105–113

    Article  CAS  Google Scholar 

  35. Yao L, Yang H, Chen Z, Qiu M, Hu B, Wang X (2021) Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere 273:128576

    Article  CAS  Google Scholar 

  36. Gao P, Yang Y, Yin Z, Kang F, Fan W, Sheng J, Feng L, Liu Y, Du Z, Zhang L (2021) A critical review on bismuth oxyhalide based photocatalysis for pharmaceutical active compounds degradation: modifications, reactive sites, and challenges. J Hazard Mater 412:125186

    Article  CAS  PubMed  Google Scholar 

  37. Lu J, Zhou W, Zhang X, Xiang G (2020) Electronic structures and lattice dynamics of layered BiOCl single crystals. J Phys Chem Lett 11:1038–1044

    Article  CAS  PubMed  Google Scholar 

  38. [38]Keramidas ΚG, Voutsas GP, Rentzeperis PI (1993) The crystal structure of BiOCl. Z für Kristallographie - Crystalline Mater 205:35–40

    Article  CAS  Google Scholar 

  39. Wang Q, Hui J, Huang Y, Ding Y, Cai Y, Yin S, Li Z, Su B (2014) The preparation of BiOCl photocatalyst and its performance of photodegradation on dyes. Mater Sci Semiconduct Process 17:87–93

    Article  CAS  Google Scholar 

  40. Xu Z, Zhang C, Zhang Y, Gu Y, An Y (2022) BiOCl-based photocatalysts: synthesis methods, structure, property, application, and perspective. Inorg Chem Commun 138:109277

    Article  CAS  Google Scholar 

  41. Li G, Jiang B, Xiao S, Lian Z, Zhang D, Yu JC, Li H (2014) An efficient dye-sensitized BiOCl photocatalyst for air and water purification under visible light irradiation, vol 16. Processes & Impacts, Environmental Science, pp 1975–1980

    Google Scholar 

  42. Chai SY, Kim YJ, Jung MH, Chakraborty AK, Jung D, Lee WI (2009) Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst. J Catal 262:144–149

    Article  CAS  Google Scholar 

  43. Tang R, Su H, Sun Y, Zhang X, Li L, Liu C, Wang B, Zeng S, Sun D (2016) Facile fabrication of Bi2WO6/Ag2S heterostructure with enhanced visible-light-driven photocatalytic performances. Nanoscale Res Lett 11:1–12

    Article  Google Scholar 

  44. He Z, Shi Y, Gao C, Wen L, Chen J, Song S (2014) BiOCl/BiVO4 p–n heterojunction with enhanced photocatalytic activity under visible-light irradiation. J Phys Chem C 118:389–398

    Article  CAS  Google Scholar 

  45. Zhang X, Wang X-B, Wang L-W, Wang W-K, Long LL, Li W-W, Yu H-Q (2014) Synthesis of a highly efficient BiOCl single-crystal nanodisk photocatalyst with exposing {001} facets. ACS Appl Mater Interfac 6:7766–7772

    Article  CAS  Google Scholar 

  46. Lei Y, Wang G, Song S, Fan W, Zhang H (2009) Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties. CrystEngComm 11:1857–1862

    Article  CAS  Google Scholar 

  47. Chen C-C, Chang S-H, Shaya J, Liu F-Y, Lin Y-Y, Wang L-G, Tsai H-Y, Lu C-S (2022) Hydrothermal synthesis of BiOxBry/BiOmIn/GO composites with visible-light photocatalytic activity. J Taiwan Inst Chem Eng 133:104272

    Article  CAS  Google Scholar 

  48. Trill H, Eckert H, Srdanov VI (2003) Mixed halide sodalite solid solution systems. Hydrothermal synthesis and structural characterization by solid state NMR. J Phys Chem B 107:8779–8788

    Article  CAS  Google Scholar 

  49. Li X, Chen Y, Tao Y, Shen L, Xu Z, Bian Z, Li H (2022) Challenges of photocatalysis and their coping strategies. Chem Catal 2:1315–1345

    Article  CAS  Google Scholar 

  50. Li J, Yang F, Zhou Q, Wu L, Li W, Ren R, Lv Y (2019) Visible-light photocatalytic performance, recovery and degradation mechanism of ternary magnetic Fe3O4/BiOBr/BiOI composite. RSC Adv 9:23545–23553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. John M, Jeffrey B (2018) Modified Titanium Dioxide for Photocatalytic Applications, in: K. Sher Bahadar, A. Kalsoom (Eds.) Photocatalysts, IntechOpen, London, pp 3

  52. Qasem NAA, Mohammed RH, Lawal DU (2021) Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water 4:36

    Article  CAS  Google Scholar 

  53. Choi H, Stathatos E, Dionysiou DD (2007) Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems. Desalination 202:199–206

    Article  CAS  Google Scholar 

  54. Hu Y, Zhao P, Liu H, Yi X, Song W, Wang X (2023) Photocatalytic thin film composite forward osmosis membrane for mitigating organic fouling in active layer facing draw solution mode. Chin Chem Lett 34:107931

    Article  CAS  Google Scholar 

  55. Binazadeh M, Rasouli J, Sabbaghi S, Mousavi SM, Hashemi SA, Lai CW (2023) Overv Photocatalytic Membrane Degrad Dev Mater 16:3526

    CAS  Google Scholar 

  56. Ainali NM, Kalaronis D, Evgenidou E, Bikiaris DN, Lambropoulou DA (2021) Insights into biodegradable polymer-supported titanium dioxide photocatalysts for environmental remediation. Macromol 1:201–233

    Article  CAS  Google Scholar 

  57. Fernando TLD, Ray S, Perera J, Swift S, Simpson MC (2023) Photocatalytic and protective thin films for enhanced self-cleaning activity and durability of painted steel roofings. ChemistrySelect 8(3):e202202880

    Article  CAS  Google Scholar 

  58. Kubiak B, Radtke A, Topolski A, Wrzeszcz G, Golińska P, Kaszkowiak E, Sobota M, Włodarczyk J, Stojko M, Piszczek P (2021) The composites of PCL and Tetranuclear Titanium(IV)-oxo complexes as materials exhibiting the photocatalytic and the antimicrobial activity. Int J Mol Sci 22:7021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sasikala V, Karthik P, Ravichandran S, Prakash N, Rajesh J, Mukkannan A (2023) Effective removal of organic dyes using novel MnWO4 incorporated CA/PCL nanocomposite membranes. Surf Interfac 40:103008

    Article  CAS  Google Scholar 

  60. Tu H, Li D, Yi Y, Liu R, Wu Y, Dong X, Shi X, Deng H (2019) Incorporation of rectorite into porous polycaprolactone/TiO2 nanofibrous mats for enhancing photocatalysis properties towards organic dye pollution. Compos Commun 15:58–63

    Article  Google Scholar 

  61. Wang L, Yang H, Hou J, Zhang W, Xiang C, Li L (2017) Effect of the electrical conductivity of core solutions on the morphology and structure of core–shell CA-PCL/CS nanofibers. New J Chem 41:15072–15078

    Article  CAS  Google Scholar 

  62. Orlando JD, Limbu TB, Chitara B, Yan F (2020) One-pot electronspinning of polyvinylpyrrolidone/cellulose acetate/TiO2 nanofibrous membranes with enhanced photocatalytic properties. J Porous Mater 27:911–918

    Article  CAS  Google Scholar 

  63. Abdelhameed RM, El-Shahat M, Emam HE (2020) Employable metal (ag & pd)@ MIL-125-NH2@ cellulose acetate film for visible-light driven photocatalysis for reduction of nitro-aromatics. Carbohydr Polym 247:116695

    Article  CAS  PubMed  Google Scholar 

  64. Marinho BA, Cristóvão RO, Djellabi R, Loureiro JM, Boaventura RA, Vilar VJ (2017) Photocatalytic reduction of cr (VI) over TiO2-coated cellulose acetate monolithic structures using solar light. Appl Catal B 203:18–30

    Article  CAS  Google Scholar 

  65. Wu S, Qin X, Li M (2014) The structure and properties of cellulose acetate materials: a comparative study on electrospun membranes and casted films. J Ind Text 44:85–98

    Article  CAS  Google Scholar 

  66. Tang W, Zhang Y, Guo H, Liu Y (2019) Heterogeneous activation of peroxymonosulfate for bisphenol AF degradation with BiOI 0.5 Cl 0.5. RSC advances 9(25):14060–14071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang G, Sun Z, Hu X, Song A, Zheng S (2017) Synthesis of BiOCl/TiO2–zeolite composite with enhanced visible light photoactivity. J Taiwan Inst Chem Eng 81:435–444

    Article  CAS  Google Scholar 

  68. Narenuch T, Senasu T, Chankhanittha T, Nanan S (2021) Solvothermal synthesis of CTAB Capped and SDS capped BiOCl photocatalysts for degradation of rhodamine B (RhB) dye and fluoroquinolone antibiotics. J Solid State Chem 294:121824

    Article  CAS  Google Scholar 

  69. Di J, Xia J, Yin S, Xu H, Xu L, Xu Y, He M, Li H (2014) One-pot solvothermal synthesis of Cu-modified BiOCl via a Cu-containing ionic liquid and its visible-light photocatalytic properties. RSC Adv 4:14281–14290

    Article  CAS  Google Scholar 

  70. Yang W, Ma B, Wang W, Wen Y, Zeng D, Shan B (2013) Enhanced photosensitized activity of a BiOCl–Bi2WO6 heterojunction by effective interfacial charge transfer. Phys Chem Chem Phys 15:19387–19394

    Article  CAS  PubMed  Google Scholar 

  71. Cheng G, Xiong J, Stadler FJ (2013) Facile template-free and fast refluxing synthesis of 3D desertrose-like BiOCl nanoarchitectures with superior photocatalytic activity. New J Chem 37:3207–3213

    Article  CAS  Google Scholar 

  72. Ding L, Wei R, Chen H, Hu J, Li J (2015) Controllable synthesis of highly active BiOCl hierarchical microsphere self-assembled by nanosheets with tunable thickness. Appl Catal B 172:91–99

    Google Scholar 

  73. Hou W, Deng C, Xu H, Li D, Zou Z, Xia H, Xia D (2020) n–p BiOCl@g-C3N4 heterostructure with rich-oxygen vacancies for photodegradation of carbamazepine. ChemistrySelect 5:2767–2777

    Article  CAS  Google Scholar 

  74. Karthik P, Ravichandran S, Sasikala V, Mukkannan A, Rajesh J (2023) Evaluation of MnO2 incorporated cellulose acetate membranes and their potential photocatalytic studies using Rhodamine-B dye. Process Saf Environ Prot 179:691–699

    Article  CAS  Google Scholar 

  75. Anand P, Verma A, Hong Y-A, Hu A, Jaihindh DP, Wong M-S, Fu Y-P (2023) Morphological and elemental tuning of BiOCl/BiVO4 heterostructure for uric acid electrochemical sensor and antibiotic photocatalytic degradation. Chemosphere 310:136847

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the management of Saveetha School of Engineering (Saveetha University), Tamil Nadu, India for providing the facilities.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Here in this paper, VS and AM have developed the research idea, performed the experiments, and written the articles. PK is an author contributing to photocatalytic studies. Throughout the experiment, SR and NP provided their lab equipment as well as insightful advice. JR provided full direction and the required chemicals for the experiments.

Corresponding author

Correspondence to Azhagurajan Mukkannan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding the publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3330.7 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasikala, V., Karthik, P., Ravichandran, S. et al. Facile Synthesis of BiOCl Incorporated Polymer Membrane for Effective Photocatalytic Dye Degradation. J Polym Environ 32, 1937–1951 (2024). https://doi.org/10.1007/s10924-023-03096-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-03096-2

Keywords

Navigation