Skip to main content

Advertisement

Log in

1,12-Dodecanediol-Based Polyesters Derived from Aliphatic Diacids with Even Carbons: Synthesis and Characterization

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, the melt polycondensation method was used to synthesize aliphatic polyesters from 1,12-dodecanediol and aliphatic diacids with even carbon atoms. Gel permeation chromatography, hydrogen-1 nuclear magnetic resonance (1H NMR), infrared spectroscopy, differential scanning calorimetry, wide-angle X-ray diffraction, thermogravimetric analysis, tensile test, dynamic mechanical analysis, and rotational rheometer were used for characterization. All polyesters had high weight average molecular weight (> 60,000 g/mol). Poly(1,12-dodecylene adipate) had the lowest weight average molecular weight (66,360 g/mol) and poor thermal stability. Four polyesters had very flexible molecular chains and shared a crystalline structure with polyethylene. Poly(1,12-dodecylene octanedioate) and poly(1,12-dodecylene sebacate) had tensile strength of 20.8 MPa and 25.3 MPa, respectively, and elongation at break of 255% and 254%, respectively, meaning that their tensile properties were similar to those of polyethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang G, Dong Y, Hao X, Zhang L, Sun R (2022) Bio-based poly(butylene furandicarboxylate-co-butylene 2,5-thiophenedicarboxylate): synthesis, thermal properties, crystallization properties and mechanical properties. Polym Bull

  2. Wang G, Dong E, Tang S, Song S (2023) 1,4-Cyclohexanedimethanol-based polyesters derived from biomass: synthesis, thermal properties, crystallization properties, and tensile properties. Polym Bull 80(2):1603–1614

    Article  CAS  Google Scholar 

  3. Gandini A, Lacerda TM (2015) From monomers to polymers from renewable resources: recent advances. Prog Polym Sci 48:1–39

    Article  CAS  Google Scholar 

  4. Rigotti D, Fredi G, Perin D, Bikiaris DN, Dorigato A (2022) Statistical modeling and optimization of the drawing process of bioderived polylactide/poly(dodecylene furanoate) wet-spun fibers. Polymers 14(3):396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang G, Song J (2021) Synthesis and characterization of bio-based polyesters derived from 1,10-decanediol. J Appl Polym Sci 138(39):51163

    Article  CAS  Google Scholar 

  6. Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML (2010) Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym Degrad Stabil 95(2):116–125

    Article  CAS  Google Scholar 

  7. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9(5):552–571

    Article  CAS  PubMed  Google Scholar 

  8. Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37(12):1657–1677

    Article  CAS  Google Scholar 

  9. Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Manchado MA, Kenny JM (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38(10):1720–1747

    Article  CAS  Google Scholar 

  10. Wang G, Zhang L, Wang J, Hao X, Dong Y, Sun R (2022) Ductile polylactic acid-based blend derived from bio-based poly(butylene adipate-co-butylene furandicarboxylate). Polym Bull

  11. Bahrami M, Enciso B, Gaifami CM, Abenojar J, Martinez MA (2021) Characterization of hybrid biocomposite poly-butyl-succinate/carbon fibers/flax fibers. Compos B Eng 221:109033

    Article  CAS  Google Scholar 

  12. Wang H, Dong Z (2022) Sun, fully bio-based poly(butylene succinate-co-butylene 2,5-thiophenedicarboxylate) with derived from 2,5-thiophenedicarboxylic acid. Express Polym Lett 16:772–784

    Article  CAS  Google Scholar 

  13. Ojijo V, Ray SS (2014) Nano-biocomposites based on synthetic aliphatic polyesters and nanoclay. Pergamon.

  14. Messin T, Follain N, Guinault A, Sollogoub C, Gaucher V, Delpouve N, Marais S (2017) Structure and barrier properties of multinanolayered biodegradable PLA/PBSA films: confinement effect via forced assembly coextrusion. ACS Appl Mater Interfaces 9(34):29101–29112

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Shishatskaya EI, Volova TG, da Silva LF, Chen G-Q (2018) Polyhydroxyalkanoates (PHA) for therapeutic applications. Mater Sci Eng C 86:144–150

    Article  CAS  Google Scholar 

  16. Tarrahi R, Fathi Z, Seydibeyoğlu MÖ, Doustkhah E, Khataee A (2020) Polyhydroxyalkanoates (PHA): from production to nanoarchitecture. Int J Biol Macromol 146:596–619

    Article  CAS  PubMed  Google Scholar 

  17. Gopi S, Kontopoulou M, Ramsay BA, Ramsay JA (2018) Manipulating the structure of medium-chain-length polyhydroxyalkanoate (MCL-PHA) to enhance thermal properties and crystallization kinetics. Int J Biol Macromol 119:1248–1255

    Article  CAS  PubMed  Google Scholar 

  18. Rabnawaz M, Wyman I, Auras R, Cheng S (2017) A roadmap towards green packaging: the current status and future outlook for polyesters in the packaging industry. Green Chem 19(20):4737–4753

    Article  CAS  Google Scholar 

  19. Armentano I, Gigli M, Morena F, Argentati C, Torre L, Martino S (2018) Recent advances in nanocomposites based on aliphatic polyesters: design, synthesis, and applications in regenerative medicine. Appl Sci 8(9):1452

    Article  Google Scholar 

  20. Chin AL, Wang X, Tong R (2021) Aliphatic polyester-based materials for enhanced cancer immunotherapy. Macromol Biosci 21(7):2100087

    Article  CAS  Google Scholar 

  21. Ivanova TA, Golubeva EN (2022) Aliphatic polyesters for biomedical purposes: design and kinetic regularities of degradation in vitro. Russ J Phys Chem B 16(3):426–444

    Article  CAS  Google Scholar 

  22. Bin TQ, Liu J-P, Feng L-M, Hu Y-H, Yin S-X, et al (2011) Non-isothermal crystallization kinetics and dynamic mechanical thermal properties of poly(butylene succinate) composites reinforced with cotton stalk bast fibers

  23. Song L, Qiu Z (2011) Influence of low multi-walled carbon nanotubes loadings on the crystallization behavior of biodegradable poly(butylene succinate) nanocomposites. Polym Adv Technol 22(12):1642–1649

    Article  CAS  Google Scholar 

  24. Zhang Q, Song M, Xu Y, Wang W, Wang Z, Zhang L (2021) Bio-based polyesters: recent progress and future prospects. Prog Polym Sci 120:101430

    Article  CAS  Google Scholar 

  25. Viamonte-Aristizábal S, García-Sancho A, Campos FMA, Martínez-Lao JA, Fernández I (2021) Synthesis of high molecular weight L-Polylactic acid (PLA) by reactive extrusion at a pilot plant scale: Influence of 1,12-dodecanediol and di(trimethylol propane) as initiators. Eur Polym J 161:110818

    Article  Google Scholar 

  26. Fu Y, Meng X, Liang X, Wu J (2020) Density and viscosity measurements of 1-dodecanol and 1,12-dodecanediol at temperatures of up to 573.15 k and pressures of up to 10 MPa. J Chem Eng Data 66(1)

  27. Hsieh S-C, Wang J-H, Lai Y-C, Su C-Y, Lee K-T (2018) Production of 1-dodecanol, 1-tetradecanol, and 1,12-dodecanediol through whole-cell biotransformation in Escherichia coli. Appl Environ Microbiol 84(4):e01806-e1817

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cao W, Liu B, Luo J, Yin J, Wan Y (2017) alpha, omega-Dodecanedioic acid production by Candida viswanathii ipe-1 with co-utilization of wheat straw hydrolysates and n-dodecane. Biores Technol 243:179–187

    Article  CAS  Google Scholar 

  29. Cao W, Li H, Luo J, Yin J, Wan Y (2017) High-level productivity of α,ω-dodecanedioic acid with a newly isolated Candida viswanathii strain. J Ind Microbiol Biotechnol (2017).

  30. Funk I, Rimmel N, Schorsch C, Sieber V, Schmid J (2017) Production of dodecanedioic acid via biotransformation of low cost plant-oil derivatives using Candida tropicalis. J Ind Microbiol Biotechnol 44(10):1491–1502

    Article  CAS  PubMed  Google Scholar 

  31. Barbiroli G, Lorenzetti C, Berti C, Fiorini M, Manaresi P (2003) Polyethylene like polymers. Aliphatic polyesters of dodecanedioic acid: 1. Synthesis and properties. Eur Polymer J 39(4):655–661

    Article  CAS  Google Scholar 

  32. Terzopoulou Z, Tsanaktsis V, Nerantzaki M, Achilias DS, Vaimakis T, Papageorgiou GZ, Bikiaris DN (2016) Thermal degradation of biobased polyesters: kinetics and decomposition mechanism of polyesters from 2,5-furandicarboxylic acid and long-chain aliphatic diols. J Anal Appl Pyrolysis 117:162–175

    Article  CAS  Google Scholar 

  33. Papamokos G, Dimitriadis T, Bikiaris DN, Papageorgiou GZ, Floudas G (2019) Chain conformation, molecular dynamics, and thermal properties of poly(n-methylene 2,5-furanoates) as a function of methylene unit sequence length. Macromolecules 52(17):6533–6546

    Article  CAS  Google Scholar 

  34. Jia Z, Wang J, Sun L, Zhu J, Liu X (2018) Fully bio-based polyesters derived from 2,5-furandicarboxylic acid (2,5-FDCA) and dodecanedioic acid (DDCA): from semicrystalline thermoplastic to amorphous elastomer. J Appl Polym Sci 135(14):46076

    Article  Google Scholar 

  35. Perin D, Rigotti D, Fredi G, Papageorgiou GZ, Bikiaris DN, Dorigato A (2021) Innovative bio-based poly(lactic acid)/poly(alkylene furanoate)s fiber blends for sustainable textile applications. J Polym Environ 29(12):3948–3963

    Article  CAS  Google Scholar 

  36. Dessie W, Xin F, Zhang W, Jiang Y, Wu H, Ma J, Jiang M (2018) Opportunities, challenges, and future perspectives of succinic acid production by Actinobacillus succinogenes. Appl Microbiol Biotechnol 102(23):9893–9910

    Article  CAS  PubMed  Google Scholar 

  37. Dai Z, Guo F, Zhang S, Zhang W, Yang Q, Dong W, Jiang M, Ma J, Xin F (2020) Bio-based succinic acid: an overview of strain development, substrate utilization, and downstream purification. Biofuels Bioprod Biorefin 14(5):965–985

    Article  CAS  Google Scholar 

  38. Thakur S, Chaudhary J, Singh P, Alsanie WF, Grammatikos SA, Thakur VK (2022) Synthesis of bio-based monomers and polymers using microbes for a sustainable bioeconomy. Bioresour Technol 344:126156

    Article  CAS  PubMed  Google Scholar 

  39. Vasishtha AK, Trivedi RK, Das G (1990) Sebacic acid and 2-octanol from castor oil. J Am Oil Chem Soc 67(5):333–337

    Article  CAS  Google Scholar 

  40. Yu S, Cui J, Wang X, Zhong C, Li Y, Yao J (2020) Preparation of sebacic acid via alkali fusion of castor oil and its several derivatives. J Am Oil Chem Soc 97(6):663–670

    Article  CAS  Google Scholar 

  41. Han J (2016) A bio-based ‘green’ process for catalytic adipic acid production from lignocellulosic biomass using cellulose and hemicellulose derived γ-valerolactone. Energy Convers Manag 129:75–80

    Article  CAS  Google Scholar 

  42. Skoog E, Shin JH, Saez-Jimenez V, Mapelli V, Olsson L (2018) Biobased adipic acid—the challenge of developing the production host. Biotechnol Adv 36(8):2248–2263

    Article  CAS  PubMed  Google Scholar 

  43. Deng W, Yan L, Wang B, Zhang Q, Song H, Wang S, Zhang Q, Wang Y (2021) Efficient catalysts for the green synthesis of adipic acid from biomass. Angew Chem Int Ed 60(9):4712–4719

    Article  CAS  Google Scholar 

  44. Nobbs JD, Zainal NZB, Tan J, Drent E, Stubbs LP, Li C, Lim SCY, Kumbang DGA, van Meurs M (2016) Bio–based pentenoic acids as intermediates to higher value-added mono- and dicarboxylic acids. ChemistrySelect 1(3):539–544

    Article  CAS  Google Scholar 

  45. Tang D, Noordover BAJ, Sablong RJ, Koning CE (2011) Metal-free synthesis of novel biobased dihydroxyl-terminated aliphatic polyesters as building blocks for thermoplastic polyurethanes. J Polym Sci A 49(13):2959–2968

    Article  CAS  Google Scholar 

  46. Plage B, Schulten HR (1990) Thermal degradation and mass-spectrometric fragmentation processes of polyesters studied by time/temperature-resolved pyrolysis-field ionization mass spectrometry. Macromolecules 23(10):2642–2648

    Article  CAS  Google Scholar 

  47. Soccio M, Lotti N, Finelli L, Gazzano M, Munari A (2007) Aliphatic poly(propylene dicarboxylate)s: effect of chain length on thermal properties and crystallization kinetics. Polymer 48(11):3125–3136

    Article  CAS  Google Scholar 

  48. Lu J, Wu L, Li B-G (2017) High molecular weight polyesters derived from biobased 1,5-pentanediol and a variety of aliphatic diacids: synthesis characterization, and thermo-mechanical properties. Acs Sustain Chem Eng 5(7):6159–6166

    Article  CAS  Google Scholar 

  49. Papadopoulos L, Magaziotis A, Nerantzaki M, Terzopoulou Z, Papageorgiou GZ, Bikiaris DN (2018) Synthesis and characterization of novel poly(ethylene furanoate-co-adipate) random copolyesters with enhanced biodegradability. Polym Degrad Stabil 156:32–42

    Article  CAS  Google Scholar 

  50. Wang J, Liu X, Jia Z, Sun L, Zhu J (2018) Highly crystalline polyesters synthesized from furandicarboxylic acid (FDCA): potential bio-based engineering plastic. Eur Polym J 109:379–390

    Article  CAS  Google Scholar 

  51. Papageorgiou DG, Guigo N, Tsanaktsis V, Exarhopoulos S, Bikiaris DN, Sbirrazzuoli N, Papageorgiou GZ (2016) Fast crystallization and melting behavior of a long-spaced aliphatic furandicarboxylate biobased polyester, poly(dodecylene 2,5-furanoate). Ind Eng Chem Res 55(18):5315–5326

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

GW: data curation, writing-original draft preparation, reviewing and editing, validation, investigation, supervision; JW: data curation, writing-original draft preparation, reviewing and editing.

Corresponding author

Correspondence to Guoqiang Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wang, J. 1,12-Dodecanediol-Based Polyesters Derived from Aliphatic Diacids with Even Carbons: Synthesis and Characterization. J Polym Environ 31, 4770–4783 (2023). https://doi.org/10.1007/s10924-023-02884-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02884-0

Keywords

Navigation