Skip to main content

Advertisement

Log in

Recent Innovations in the Strategies for the Functionalization of Chitosan, Pectin, Alginate, Hyaluronic Acid, Dextran and Inulin Biomaterials for Anticancer Applications-A Review

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polysaccharide biomaterials with carbohydrate backbones are currently the subject of material science and engineering research for anticancer applications. Polysaccharides exhibit surprising advantages compared to other substances because they are available in nature, are generally absorbed and have favorable immunogenicity, biocompatibility and biodegradability. The naturally obtained polysaccharides sometimes have undesirable drawbacks in their structures that limit their use as biomaterials and therefore functionalization of polysaccharides is important to increase their applications. Anti-tumor approaches involving polysaccharide biomaterials are associated with probiotic properties immune-enhancement, anti-mutagenic potential, tumor growth inhibition and regulatory actions to oncogene modification. Polysaccharide biomaterials with various anticancer and antimicrobial agents have been investigated as drug delivery vehicles or biomaterials. This review summarizes recent strategies for the developments of polysaccharides biomaterials such as (chitosan, pectin, alginate, hyaluronic acid, dextran and inulin) for anticancer applications, the analysis of different polysaccharide biomaterial formulations and the influence of bioactive molecules on their anticancer properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Su L, Feng Y, Wei K, Xu X, Liu R, Chen G (2021) Carbohydrate-Based Macromolecular Biomaterials Chem Rev. https://doi.org/10.1021/acs.chemrev.0c01338. acs.chemrev.0c01338

    Article  Google Scholar 

  2. Peppas N, Langer R (1994) New Challenges in Biomaterials. Science (80-.). 263 (5154), 1715–1720. https://doi.org/10.1126/science.8134835

  3. Langer R, Tirrell DA (2004) Designing Materials for Biology and Medicine. Nature 428(6982):487–492. https://doi.org/10.1038/nature02388

    Article  CAS  Google Scholar 

  4. Huebsch N, Mooney DJ (2009) Inspiration and Application in the Evolution of Biomaterials. Nature 462(7272):426–432. https://doi.org/10.1038/nature08601

    Article  CAS  Google Scholar 

  5. Gu L, Mooney DJ (2016) Biomaterials and Emerging Anticancer Therapeutics: Engineering the Microenvironment. Nat Rev Cancer 16(1):56–66. https://doi.org/10.1038/nrc.2015.3

    Article  CAS  Google Scholar 

  6. Gomes BS, Simões B, Mendes PM (2018) The Increasing Dynamic, Functional Complexity of Bio-Interface Materials. Nat Rev Chem 2(3):0120. https://doi.org/10.1038/s41570-018-0120

    Article  Google Scholar 

  7. Eder M, Amini S, Fratzl P (2018) Biological Composites—Complex Structures for Functional Diversity. Science (80-.). 362 (6414),543–547. https://doi.org/10.1126/science.aat8297

  8. Wahab IF, Razak SIA (2016) Polysaccharides as Composite Biomaterials. In Composites from Renewable and Sustainable Materials; InTech, https://doi.org/10.5772/65263

  9. Hu Y, Li Y, Xu F-J (2017) Versatile Functionalization of Polysaccharides via Polymer Grafts: From Design to Biomedical Applications. Acc Chem Res 50(2):281–292. https://doi.org/10.1021/acs.accounts.6b00477

    Article  CAS  Google Scholar 

  10. Muzzarelli RAA (1997) Human Enzymatic Activities Related to the Therapeutic Administration of Chitin Derivatives. Cell Mol Life Sci 53(2):131–140. https://doi.org/10.1007/PL00000584

    Article  CAS  Google Scholar 

  11. Tan H, Wu J, Lao L, Gao C (2009) Gelatin/Chitosan/Hyaluronan Scaffold Integrated with PLGA Microspheres for Cartilage Tissue Engineering. Acta Biomater 5(1):328–337. https://doi.org/10.1016/j.actbio.2008.07.030

    Article  CAS  Google Scholar 

  12. Li J, Cai C, Li J, Li J, Li J, Sun T, Wang L, Wu H, Yu G (2018) Chitosan-Based Nanomaterials for Drug Delivery. Molecules 23(10):2661. https://doi.org/10.3390/molecules23102661

    Article  CAS  Google Scholar 

  13. Park P-J, Je J-Y, Jung W-K, Ahn C-B, Kim S-K (2004) Anticoagulant Activity of Heterochitosans and Their Oligosaccharide Sulfates. Eur Food Res Technol 219(5):529–533. https://doi.org/10.1007/s00217-004-0977-3

    Article  CAS  Google Scholar 

  14. de Sousa Victor R, da Marcelo A, Viana de Sousa B, de Araújo Neves G, de Navarro L (2020) ; Rodrigues Menezes, R. A Review on Chitosan’s Uses as Biomaterial: Tissue Engineering, Drug Delivery Systems and Cancer Treatment. Materials (Basel). 13 (21), 4995. https://doi.org/10.3390/ma13214995

  15. Vongchan P, Sajomsang W, Subyen D, Kongtawelert P (2002) Anticoagulant Activity of a Sulfated Chitosan. Carbohydr Res 337(13):1239–1242. https://doi.org/10.1016/S0008-6215(02)00098-8

    Article  CAS  Google Scholar 

  16. Yang H, Sun A, Yang J, Cheng H, Yang X, Chen H, Huanfei D, Falahati M (2021) Development of Doxorubicin-Loaded Chitosan–Heparin Nanoparticles with Selective Anticancer Efficacy against Gastric Cancer Cells in Vitro through Regulation of Intrinsic Apoptosis Pathway. Arab J Chem 14(8):103266. https://doi.org/10.1016/j.arabjc.2021.103266

    Article  CAS  Google Scholar 

  17. Kamath PR, Sunil D (2017) Nano-Chitosan Particles in Anticancer Drug Delivery: An Up-to-Date Review. Mini-Reviews Med Chem 17(15). https://doi.org/10.2174/1389557517666170228105731

  18. Borkowska M, Siek M, Kolygina DV, Sobolev YI, Lach S, Kumar S, Cho Y-K, Kandere-Grzybowska K, Grzybowski BA (2020) Targeted Crystallization of Mixed-Charge Nanoparticles in Lysosomes Induces Selective Death of Cancer Cells. Nat Nanotechnol 15(4):331–341. https://doi.org/10.1038/s41565-020-0643-3

    Article  CAS  Google Scholar 

  19. Zeinizade E, Tabei M, Shakeri-Zadeh A, Ghaznavi H, Attaran N, Komeili A, Ghalandari B, Maleki S, Kamrava SK (2018) Selective Apoptosis Induction in Cancer Cells Using Folate-Conjugated Gold Nanoparticles and Controlling the Laser Irradiation Conditions. Artif Cells Nanomedicine Biotechnol sup146. https://doi.org/10.1080/21691401.2018.1443116

  20. Liao T, Liu C, Ren J, Chen H, Kuang Y, Jiang B, Chen J, Sun Z, Li CA (2021) Chitosan/Mesoporous Silica Nanoparticle-Based Anticancer Drug Delivery System with a “Tumor-Triggered Targeting” Property. Int J Biol Macromol 183. https://doi.org/10.1016/j.ijbiomac.2021.06.004

  21. Kasinathan K, Marimuthu K, Murugesan B, Samayanan S, Cai Y, Rathinam C (2021) Facile Synthesis of Highly Biologically Active Chitosan Functionalized 2D WS2 Nanocomposite Anchored with Palladium Nanoparticles for Antibacterial and Anticancer Activity: In-Vitro Biomedical Evaluation. J Mol Liq 335:116582. https://doi.org/10.1016/j.molliq.2021.116582

    Article  CAS  Google Scholar 

  22. Chen X, Gu J, Sun L, Li W, Guo L, Gu Z, Wang L, Zhang Y, Zhang W, Han B, Chang J (2021) Efficient Drug Delivery and Anticancer Effect of Micelles Based on Vitamin E Succinate and Chitosan Derivatives. Bioact Mater 6(10):3025–3035. https://doi.org/10.1016/j.bioactmat.2021.02.028

    Article  CAS  Google Scholar 

  23. Dhavale RP, Dhavale RP, Sahoo SC, Kollu P, Jadhav SU, Patil PS, Dongale TD, Chougale AD, Patil PB (2021) Chitosan Coated Magnetic Nanoparticles as Carriers of Anticancer Drug Telmisartan: PH-Responsive Controlled Drug Release and Cytotoxicity Studies. J Phys Chem Solids 148:109749. https://doi.org/10.1016/j.jpcs.2020.109749

    Article  CAS  Google Scholar 

  24. Wang Y, Ma J, Qiu T, Tang M, Zhang X, Dong W (2021) In Vitro and in Vivo Combinatorial Anticancer Effects of Oxaliplatin- and Resveratrol-Loaded N,O-Carboxymethyl Chitosan Nanoparticles against Colorectal Cancer. Eur J Pharm Sci 163:105864. https://doi.org/10.1016/j.ejps.2021.105864

    Article  CAS  Google Scholar 

  25. Resmi R, Yoonus J, Beena B (2021) Anticancer and Antibacterial Activity of Chitosan Extracted from Shrimp Shell Waste. Mater. Today Proc. 41, 570–576. https://doi.org/10.1016/j.matpr.2020.05.251

  26. Elhag M, Abdelwahab HE, Mostafa MA, Yacout GA, Nasr AZ, Dambruoso P, El Sadek MM (2021) One Pot Synthesis of New Cross-Linked Chitosan-Schiff’ Base: Characterization, and Anti-Proliferative Activities. Int J Biol Macromol 184:558–565. https://doi.org/10.1016/j.ijbiomac.2021.06.137

    Article  CAS  Google Scholar 

  27. Guo H, Li F, Qiu H, Liu J, Qin S, Hou Y, Wang C (2020) Preparation and Characterization of Chitosan Nanoparticles for Chemotherapy of Melanoma Through Enhancing Tumor Penetration. Front Pharmacol 11. https://doi.org/10.3389/fphar.2020.00317

  28. Pandit A, Khare L, Jahagirdar D, Srivastav A, Jain R, Dandekar P (2020) Probing Synergistic Interplay between Bio-Inspired Peptidomimetic Chitosan-Copper Complexes and Doxorubicin. Int J Biol Macromol 161:1475–1483. https://doi.org/10.1016/j.ijbiomac.2020.07.241

    Article  CAS  Google Scholar 

  29. Kasinathan K, Marimuthu K, Murugesan B, Sathaiah M, Subramanian P, Sivakumar P, Swaminathan U, Subbiah R (2021) Fabrication of Eco-Friendly Chitosan Functionalized Few-Layered WS2 Nanocomposite Implanted with Ruthenium Nanoparticles for in Vitro Antibacterial and Anticancer Activity: Synthesis, Characterization, and Pharmaceutical Applications. Int J Biol Macromol 190:520–532. https://doi.org/10.1016/j.ijbiomac.2021.08.153

    Article  CAS  Google Scholar 

  30. Kasinathan K, Marimuthu K, Murugesan B, Samayanan S, Panchu SJ, Swart HC, Savariroyan S (2021) R. I. Synthesis of Biocompatible Chitosan Functionalized Ag Decorated Biocomposite for Effective Antibacterial and Anticancer Activity. Int J Biol Macromol 178:270–282. https://doi.org/10.1016/j.ijbiomac.2021.02.127

    Article  CAS  Google Scholar 

  31. Kasinathan K, Murugesan B, Pandian N, Mahalingam S, Selvaraj B, Marimuthu K (2020) Synthesis of Biogenic Chitosan-Functionalized 2D Layered MoS2 Hybrid Nanocomposite and Its Performance in Pharmaceutical Applications: In-Vitro Antibacterial and Anticancer Activity. Int J Biol Macromol 149:1019–1033. https://doi.org/10.1016/j.ijbiomac.2020.02.003

    Article  CAS  Google Scholar 

  32. Adhikari HS, Garai A, Thapa M, Adhikari R, Yadav PN (2022) Chitosan Functionalized Thiophene-2-Thiosemicarbazones, and Their Copper(II) Complexes: Synthesis, Characterization, and Anticancer Activity. J Macromol Sci Part A 59(3):211–227. https://doi.org/10.1080/10601325.2021.2022982

    Article  CAS  Google Scholar 

  33. Adhikari HS, Garai A, Khanal C, Adhikari R, Yadav PN (2021) Imidazole-2-Carboxaldehyde Chitosan Thiosemicarbazones and Their Copper(II) Complexes: Synthesis, Characterization and Antitumorigenic Activity against Madin-Darby Canine Kidney Cell Line. Asian J Chem 33(5):969–976. https://doi.org/10.14233/ajchem.2021.23078

    Article  CAS  Google Scholar 

  34. Chen M, Li L, Xia L, Jiang S, Kong Y, Chen X, Wang H (2021) The Kinetics and Release Behaviour of Curcumin Loaded PH-Responsive PLGA/Chitosan Fibers with Antitumor Activity against HT-29 Cells. Carbohydr Polym 265:118077. https://doi.org/10.1016/j.carbpol.2021.118077

    Article  CAS  Google Scholar 

  35. Shakeran Z, Keyhanfar M, Varshosaz J, Sutherland DS (2021) Biodegradable Nanocarriers Based on Chitosan-Modified Mesoporous Silica Nanoparticles for Delivery of Methotrexate for Application in Breast Cancer Treatment. Mater Sci Eng C 118:111526. https://doi.org/10.1016/j.msec.2020.111526

    Article  CAS  Google Scholar 

  36. Sathiyaseelan A, Saravanakumar K, Mariadoss AVA, Wang M-H (2021) Carbohydr Polym 262:117907. https://doi.org/10.1016/j.carbpol.2021.117907. PH-Controlled Nucleolin Targeted Release of Dual Drug from Chitosan-Gold Based Aptamer Functionalized Nano Drug Delivery System for Improved Glioblastoma Treatment

  37. Abasalta M, Asefnejad A, Khorasani MT, Saadatabadi AR (2021) Fabrication of Carboxymethyl Chitosan/Poly(ε-Caprolactone)/Doxorubicin/Nickel Ferrite Core-Shell Fibers for Controlled Release of Doxorubicin against Breast Cancer. Carbohydr Polym 257:117631. https://doi.org/10.1016/j.carbpol.2021.117631

    Article  CAS  Google Scholar 

  38. Hassanpour M, Jafari H, Sharifi S, Rezaie J, Lighvan ZM, Mahdavinia GR, Gohari G, Akbari A (2021) Salicylic Acid-Loaded Chitosan Nanoparticles (SA/CTS NPs) for Breast Cancer Targeting: Synthesis, Characterization and Controlled Release Kinetics. J Mol Struct 1245:131040. https://doi.org/10.1016/j.molstruc.2021.131040

    Article  CAS  Google Scholar 

  39. Pereira FM, Melo MN, Santos ÁKM, Oliveira KV, Diz FM, Ligabue RA, Morrone FB, Severino P, Fricks AT (2021) Hyaluronic Acid-Coated Chitosan Nanoparticles as Carrier for the Enzyme/Prodrug Complex Based on Horseradish Peroxidase/Indole-3-Acetic Acid: Characterization and Potential Therapeutic for Bladder Cancer Cells. Enzyme Microb Technol 150:109889. https://doi.org/10.1016/j.enzmictec.2021.109889

    Article  CAS  Google Scholar 

  40. Li R, Zhang Y, Lin Z, Lei Q, Liu Y, Li X, Liu M, Wu G, Luo S, Wang H, Zheng X, Li L, Ao N, Zha Z (2021) Injectable Halloysite-g-Chitosan Hydrogels as Drug Carriers to Inhibit Breast Cancer Recurrence. Compos Part B Eng 221:109031. https://doi.org/10.1016/j.compositesb.2021.109031

    Article  CAS  Google Scholar 

  41. Jiang Z, Chi J, Li H, Wang Y, Liu W, Han B (2021) Effect of Chitosan Oligosaccharide-Conjugated Selenium on Improving Immune Function and Blocking Gastric Cancer Growth. Eur J Pharmacol 891:173673. https://doi.org/10.1016/j.ejphar.2020.173673

    Article  CAS  Google Scholar 

  42. Li H, Zhuang S, Yang Y, Zhou F, Rong J, Zhao JATP (2021) /Hyals Dually Responsive Core-Shell Hyaluronan/Chitosan-Based Drug Nanocarrier for Potential Application in Breast Cancer Therapy. Int J Biol Macromol 183:839–851. https://doi.org/10.1016/j.ijbiomac.2021.05.020

    Article  CAS  Google Scholar 

  43. Jafari H, Hassanpour M, Akbari A, Rezaie J, Gohari G, Reza Mahdavinia G, Jabbari E (2021) Characterization of PH-Sensitive Chitosan/Hydroxypropyl Methylcellulose Composite Nanoparticles for Delivery of Melatonin in Cancer Therapy. Mater Lett 282:128818. https://doi.org/10.1016/j.matlet.2020.128818

    Article  CAS  Google Scholar 

  44. Ahsan A, Farooq MA, Parveen A (2020) Thermosensitive Chitosan-Based Injectable Hydrogel as an Efficient Anticancer Drug Carrier. ACS Omega 5(32):20450–20460. https://doi.org/10.1021/acsomega.0c02548

    Article  CAS  Google Scholar 

  45. Jafari H, Atlasi Z, Mahdavinia GR, Hadifar S, Sabzi M Magnetic κ-Carrageenan/Chitosan/Montmorillonite Nanocomposite Hydrogels with Controlled Sunitinib Release.Mater. Sci. Eng. C2021, 124,112042. https://doi.org/10.1016/j.msec.2021.112042

  46. Kesavan S, Meena K, Sharmili SA, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Alobaidi AS, Alanzi KF, Vaseeharan B (2021) Ulvan Loaded Graphene Oxide Nanoparticle Fabricated with Chitosan and D-Mannose for Targeted Anticancer Drug Delivery. J Drug Deliv Sci Technol 65:102760. https://doi.org/10.1016/j.jddst.2021.102760

    Article  CAS  Google Scholar 

  47. Cao X-X, Liu S-L, Lu J-S, Zhang Z-W, Wang G, Chen Q, Lin N (2021) Chitosan Coated Biocompatible Zeolitic Imidazolate Framework ZIF-90 for Targeted Delivery of Anticancer Drug Methotrexate. J Solid State Chem 300:122259. https://doi.org/10.1016/j.jssc.2021.122259

    Article  CAS  Google Scholar 

  48. Hanafy NAN, Leporatti S, El-Kemary MA (2021) Extraction of Chlorophyll and Carotenoids Loaded into Chitosan as Potential Targeted Therapy and Bio Imaging Agents for Breast Carcinoma. Int J Biol Macromol 182:1150–1160. https://doi.org/10.1016/j.ijbiomac.2021.03.189

    Article  CAS  Google Scholar 

  49. Ghaffari S-B, Sarrafzadeh M-H, Salami M, Khorramizadeh MR (2020) A PH-Sensitive Delivery System Based on N-Succinyl Chitosan-ZnO Nanoparticles for Improving Antibacterial and Anticancer Activities of Curcumin. Int J Biol Macromol 151:428–440. https://doi.org/10.1016/j.ijbiomac.2020.02.141

    Article  CAS  Google Scholar 

  50. Mani S, Balasubramanian B, Balasubramani R, Chang SW, Ponnusamy P, Esmail GA, Arasu MV, Al-Dhabi NA, Duraipandiyan V (2020) Synthesis and Characterization of Proanthocyanidin-Chitosan Nanoparticles: An Assessment on Human Colorectal Carcinoma HT-29 Cells. J Photochem Photobiol B Biol 210:111966. https://doi.org/10.1016/j.jphotobiol.2020.111966

    Article  CAS  Google Scholar 

  51. Ridley BL, O’Neill MA, Mohnen D, Pectins (2001) Structure, Biosynthesis, and Oligogalacturonide-Related Signaling. Phytochemistry 57(6):929–967. https://doi.org/10.1016/S0031-9422(01)00113-3

    Article  CAS  Google Scholar 

  52. Qian J, Chen Y, Wang Q, Zhao X, Yang H, Gong F, Guo H (2021) Preparation and Antimicrobial Activity of Pectin-Chitosan Embedding Nisin Microcapsules. Eur Polym J 157:110676. https://doi.org/10.1016/j.eurpolymj.2021.110676

    Article  CAS  Google Scholar 

  53. Fraeye I, Duvetter T, Doungla E, Van Loey A, Hendrickx M (2010) Fine-Tuning the Properties of Pectin–Calcium Gels by Control of Pectin Fine Structure, Gel Composition and Environmental Conditions. Trends Food Sci Technol 21(5):219–228. https://doi.org/10.1016/j.tifs.2010.02.001

    Article  CAS  Google Scholar 

  54. Kim Y, Williams MAK, Tzen JTC, Luzio GA, Galant AL, Cameron RG (2014) Characterization of Charged Functional Domains Introduced into a Modified Pectic Homogalacturonan by an Acidic Plant Pectin Methylesterase (Ficus Awkeotsang Makino) and Modeling of Enzyme Mode of Action. Food Hydrocoll 39:319–329. https://doi.org/10.1016/j.foodhyd.2014.01.022

    Article  CAS  Google Scholar 

  55. Mohnen D (2008) Pectin Structure and Biosynthesis. Curr. Opin. Plant Biol 11(3):266–277. https://doi.org/10.1016/j.pbi.2008.03.006

    Article  CAS  Google Scholar 

  56. Li D, Li J, Dong H, Li X, Zhang J, Ramaswamy S, Xu F (2021) Pectin in Biomedical and Drug Delivery Applications: A Review. Int J Biol Macromol 185:49–65. https://doi.org/10.1016/j.ijbiomac.2021.06.088

    Article  CAS  Google Scholar 

  57. Morris GA, Kök SM, Harding SE, Adams GG (2010) Polysaccharide Drug Delivery Systems Based on Pectin and Chitosan. Biotechnol Genet Eng Rev 27(1):257–284. https://doi.org/10.1080/02648725.2010.10648153

    Article  CAS  Google Scholar 

  58. Yavuz-Düzgün M, Zeeb B, Dreher J, Özçelik B, Weiss J (2020) The Impact of Esterification Degree and Source of Pectins on Complex Coacervation as a Tool to Mask the Bitterness of Potato Protein Isolates. Food Biophys 15(3):376–385. https://doi.org/10.1007/s11483-020-09631-1

    Article  Google Scholar 

  59. Morris G (2000) The Effect of the Degree of Esterification on the Hydrodynamic Properties of Citrus Pectin. Food Hydrocoll 14(3):227–235. https://doi.org/10.1016/S0268-005X(00)00007-2

    Article  CAS  Google Scholar 

  60. Ciriminna R, Fidalgo A, Delisi R, Tamburino A, Carnaroglio D, Cravotto G, Ilharco LM, Pagliaro M (2017) Controlling the Degree of Esterification of Citrus Pectin for Demanding Applications by Selection of the Source. ACS Omega 2(11):7991–7995. https://doi.org/10.1021/acsomega.7b01109

    Article  CAS  Google Scholar 

  61. An H, Yang Y, Zhou Z, Bo Y, Wang Y, He Y, Wang D, Qin J (2021) Pectin-Based Injectable and Biodegradable Self-Healing Hydrogels for Enhanced Synergistic Anticancer Therapy. Acta Biomater 131:149–161. https://doi.org/10.1016/j.actbio.2021.06.029

    Article  CAS  Google Scholar 

  62. Kaushik P, Priyadarshini E, Rawat K, Rajamani P, Bohidar HB (2020) PH Responsive Doxorubucin Loaded Zein Nanoparticle Crosslinked Pectin Hydrogel as Effective Site-Specific Anticancer Substrates. Int J Biol Macromol 152:1027–1037. https://doi.org/10.1016/j.ijbiomac.2019.10.190

    Article  CAS  Google Scholar 

  63. Yu C-Y, Wang Y-M, Li N-M, Liu G-S, Yang S, Tang G-T, He D-X, Tan X-W, Wei H (2014) In Vitro and in Vivo Evaluation of Pectin-Based Nanoparticles for Hepatocellular Carcinoma Drug Chemotherapy. Mol Pharm 11(2):638–644. https://doi.org/10.1021/mp400412c

    Article  CAS  Google Scholar 

  64. Chittasupho C, Jaturanpinyo M, Mangmool S (2013) Pectin Nanoparticle Enhances Cytotoxicity of Methotrexate against HepG2 Cells. Drug Deliv 20(1):1–9. https://doi.org/10.3109/10717544.2012.739214

    Article  CAS  Google Scholar 

  65. Jun Y, Katz A (2010) PectaSol-C Modified Citrus Pectin Induces Apoptosis and Inhibition of Proliferation in Human and Mouse Androgen-Dependent and- Independent Prostate Cancer Cells. Integr Cancer Ther 9(2):197–203. https://doi.org/10.1177/1534735410369672

    Article  CAS  Google Scholar 

  66. Verma AK, Kumar A (2013) Pharmacokinetics and Biodistribution of Negatively Charged Pectin Nanoparticles Encapsulating Paclitaxel. Cancer Nanotechnol 4(4–5):99–102. https://doi.org/10.1007/s12645-013-0041-8

    Article  CAS  Google Scholar 

  67. Liu Y, Zong Y, Yang Z, Luo M, Li G, Yingsa W, Cao Y, Xiao M, Kong T, He J, Liu X, Lei J (2019) Dual-Targeted Controlled Delivery Based on Folic Acid Modified Pectin-Based Nanoparticles for Combination Therapy of Liver Cancer. ACS Sustain Chem Eng 7(3):3614–3623. https://doi.org/10.1021/acssuschemeng.8b06586

    Article  CAS  Google Scholar 

  68. Woodle MC, Lasic DD (1992) Sterically Stabilized Liposomes. Biochim. Biophys. Acta - Rev Biomembr 1113(2):171–199. https://doi.org/10.1016/0304-4157(92)90038-C

    Article  CAS  Google Scholar 

  69. OWENSIII D, PEPPAS N, Opsonization (2006) Biodistribution, and Pharmacokinetics of Polymeric Nanoparticles. Int J Pharm 307(1):93–102. https://doi.org/10.1016/j.ijpharm.2005.10.010

    Article  CAS  Google Scholar 

  70. Sunderland CJ, Steiert M, Talmadge JE, Derfus AM, Barry SE (2006) Targeted Nanoparticles for Detecting and Treating Cancer. Drug Dev Res 67(1):70–93. https://doi.org/10.1002/ddr.20069

    Article  CAS  Google Scholar 

  71. Liu Y, Qi Q, Li X, Liu J, Wang L, He J, Lei J (2017) Self-Assembled Pectin-Conjugated Eight-Arm Polyethylene Glycol–Dihydroartemisinin Nanoparticles for Anticancer Combination Therapy. ACS Sustain Chem Eng 5(9):8097–8107. https://doi.org/10.1021/acssuschemeng.7b01715

    Article  CAS  Google Scholar 

  72. Bai F, Diao J, Wang Y, Sun S, Zhang H, Liu Y, Wang Y, Cao JA (2017) New Water-Soluble Nanomicelle Formed through Self-Assembly of Pectin–Curcumin Conjugates: Preparation, Characterization, and Anticancer Activity Evaluation. J Agric Food Chem 65(32):6840–6847. https://doi.org/10.1021/acs.jafc.7b02250

    Article  CAS  Google Scholar 

  73. Tao Y, Zheng D, Zhao J, Liu K, Liu J, Lei J, Wang L, Self-Assembling PH (2021) -Responsive Nanoparticle Platform Based on Pectin–Doxorubicin Conjugates for Codelivery of Anticancer Drugs. ACS Omega 6(15):9998–10004. https://doi.org/10.1021/acsomega.0c06131

    Article  CAS  Google Scholar 

  74. Liu Y, Kong T, Yang Z, Zhang Y, Lei J, Zhao P Self-Assembled Folic Acid-Targeted Pectin-Multi-Arm Polyethylene Glycol Nanoparticles for Tumor Intracellular Chemotherapy.ACS Omega2021, 6 (2),1223–1234. https://doi.org/10.1021/acsomega.0c04350

  75. Zambuzi GC, Camargos CHM, Ferreira MP, Rezende CA, de Freitas O, Francisco KR (2021) Modulating the Controlled Release of Hydroxychloroquine Mobilized on Pectin Films through Film-Forming PH and Incorporation of Nanocellulose. Carbohydr Polym Technol Appl 100140. https://doi.org/10.1016/j.carpta.2021.100140

  76. Attallah OA, Shetta A, Elshishiny F, Mamdouh W (2020) Essential Oil Loaded Pectin/Chitosan Nanoparticles Preparation and Optimization via Box–Behnken Design against MCF-7 Breast Cancer Cell Lines. RSC Adv 10(15):8703–8708. https://doi.org/10.1039/C9RA10204C

    Article  CAS  Google Scholar 

  77. Wang D, Geng W, Li Q, Li G, Zhang D, Zhang H (2022) Ultrasonic Green Synthesis of Silver Nanoparticles Mediated by Pectin: Characterization and Evaluation of the Cytotoxicity, Antioxidant, and Colorectal Carcinoma Properties. Arab J Chem 15(2):103500. https://doi.org/10.1016/j.arabjc.2021.103500

    Article  CAS  Google Scholar 

  78. Wang C, Li G, Karmakar B, AlSalem HS, Shati AA, El-kott AF, Elsaid FG, Bani-Fwaz MZ, Alsayegh AA, Salem Alkhayyat S, El-Saber Batiha G (2022) Pectin Mediated Green Synthesis of Fe3O4/Pectin Nanoparticles under Ultrasound Condition as an Anti-Human Colorectal Carcinoma Bionanocomposite. Arab J Chem 15(6):103867. https://doi.org/10.1016/j.arabjc.2022.103867

    Article  CAS  Google Scholar 

  79. Dziadek M, Dziadek K, Salagierski S, Drozdowska M, Serafim A, Stancu I-C, Szatkowski P, Kopec A, Rajzer I, Douglas TEL, Cholewa-Kowalska K (2022) Newly Crosslinked Chitosan- and Chitosan-Pectin-Based Hydrogels with High Antioxidant and Potential Anticancer Activity. Carbohydr Polym 290:119486. https://doi.org/10.1016/j.carbpol.2022.119486

    Article  CAS  Google Scholar 

  80. Montes L, Gisbert M, Hinojosa I, Sineiro J, Moreira R (2021) Impact of Drying on the Sodium Alginate Obtained after Polyphenols Ultrasound-Assisted Extraction from Ascophyllum Nodosum Seaweeds. Carbohydr Polym 272:118455. https://doi.org/10.1016/j.carbpol.2021.118455

    Article  CAS  Google Scholar 

  81. Donati I, Paoletti S, Material Properties A (2009) ; ; pp 1–53. https://doi.org/10.1007/978-3-540-92679-5_1

  82. Gómez-Ordóñez E, Rupérez P (2011) FTIR-ATR Spectroscopy as a Tool for Polysaccharide Identification in Edible Brown and Red Seaweeds. Food Hydrocoll 25(6):1514–1520. https://doi.org/10.1016/j.foodhyd.2011.02.009

    Article  CAS  Google Scholar 

  83. Ghidoni I, Chlapanidas T, Bucco M, Crovato F, Marazzi M, Vigo D, Torre ML, Faustini M Alginate Cell Encapsulation: New Advances in Reproduction and Cartilage Regenerative Medicine.Cytotechnology2008, 58 (1),49–56. https://doi.org/10.1007/s10616-008-9161-0

  84. Lee KY, Mooney DJ, Alginate (2012) Properties and Biomedical Applications. Prog Polym Sci 37(1):106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003

    Article  CAS  Google Scholar 

  85. Zimmermann H, Shirley SG, Zimmermann U (2007) Alginate-Based Encapsulation of Cells: Past, Present, and Future. Curr Diab Rep 7(4):314–320. https://doi.org/10.1007/s11892-007-0051-1

    Article  CAS  Google Scholar 

  86. Pawar SN (2017) Chemical Modification of Alginate. Seaweed Polysaccharides. Elsevier, pp 111–155. https://doi.org/10.1016/B978-0-12-809816-5.00008-6.

  87. Gomez CG, Chambat G, Heyraud A, Villar M, Auzély-Velty R (2006) Synthesis and Characterization of a β-CD-Alginate Conjugate. Polym (Guildf) 47(26):8509–8516. https://doi.org/10.1016/j.polymer.2006.10.011

    Article  CAS  Google Scholar 

  88. Galant C, Kjøniksen A-L, Nguyen GTM, Knudsen KD, Nyström B (2006) Altering Associations in Aqueous Solutions of a Hydrophobically Modified Alginate in the Presence of β-Cyclodextrin Monomers. J Phys Chem B 110(1):190–195. https://doi.org/10.1021/jp0518759

    Article  CAS  Google Scholar 

  89. Huaitian Bu A-L, Kjøniksen KD, Knudsen and B. N. Rheological and Structural Properties of Aqueous Alginate during Gelation via the Ugi Multicomponent Condensation Reaction. Biomacromolecules 2004, No. 5, 1470–1479

  90. Bu H, Kjøniksen A-L, Elgsaeter A, Nyström B (2006) Interaction of Unmodified and Hydrophobically Modified Alginate with Sodium Dodecyl Sulfate in Dilute Aqueous Solution. Colloids Surf Physicochem Eng Asp 278(1–3):166–174. https://doi.org/10.1016/j.colsurfa.2005.12.016

    Article  CAS  Google Scholar 

  91. Dalheim M, Vanacker J, Najmi MA, Aachmann FL, Strand BL, Christensen BE (2016) Efficient Functionalization of Alginate Biomaterials Biomaterials 80:146–156. https://doi.org/10.1016/j.biomaterials.2015.11.043

    Article  CAS  Google Scholar 

  92. Yang J-S, Xie Y-J, He W (2011) Research Progress on Chemical Modification of Alginate: A Review. Carbohydr Polym 84(1):33–39. https://doi.org/10.1016/j.carbpol.2010.11.048

    Article  CAS  Google Scholar 

  93. Banks SR, Enck K, Wright M, Opara EC, Welker ME (2019) Chemical Modification of Alginate for Controlled Oral Drug Delivery. J Agric Food Chem 67(37):10481–10488. https://doi.org/10.1021/acs.jafc.9b01911

    Article  CAS  Google Scholar 

  94. Kang H-A, Shin MS, Yang J-W (2002) Preparation and Characterization of Hydrophobically Modified Alginate. Polym Bull 47(5):429–435. https://doi.org/10.1007/s002890200005

    Article  CAS  Google Scholar 

  95. Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A (2013) Crosslinked Ionic Polysaccharides for Stimuli-Sensitive Drug Delivery. Adv Drug Deliv Rev 65(9):1148–1171. https://doi.org/10.1016/j.addr.2013.04.016

    Article  CAS  Google Scholar 

  96. Işıklan N, Kurşun F (2013) Synthesis and Characterization of Graft Copolymer of Sodium Alginate and Poly(Itaconic Acid) by the Redox System. Polym Bull 70(3):1065–1084. https://doi.org/10.1007/s00289-012-0876-x

    Article  CAS  Google Scholar 

  97. Radhakrishnan N, Lakshminarayana Y, Devi SU, Srinivasan KS (1994) V. Studies on the Graft Copolymerization of Acrylonitrile Onto Sodium Alginate. J Macromol Sci Part A 31(5):581–591. https://doi.org/10.1080/10601329409349740

    Article  Google Scholar 

  98. Shaikh MAJ, Alharbi KS, Almalki WH, Imam SS, Albratty M, Meraya AM, Alzarea SI, Kazmi I, Al-Abbasi FA, Afzal O, Altamimi ASA, Singh Y, Singh SK, Dua K, Gupta G (2022) Sodium Alginate Based Drug Delivery in Management of Breast Cancer. Carbohydr Polym 292:119689. https://doi.org/10.1016/j.carbpol.2022.119689

    Article  CAS  Google Scholar 

  99. Wei W, Li R, Liu Q, Devanathadesikan Seshadri V, Veeraraghavan VP, Surapaneni KM, Rengarajan T (2021) Amelioration of Oxidative Stress, Inflammation and Tumor Promotion by Tin Oxide-Sodium Alginate-Polyethylene Glycol-Allyl Isothiocyanate Nanocomposites on the 1,2-Dimethylhydrazine Induced Colon Carcinogenesis in Rats. Arab J Chem 14(8):103238. https://doi.org/10.1016/j.arabjc.2021.103238

    Article  CAS  Google Scholar 

  100. Sorasitthiyanukarn FN, Muangnoi C, Rojsitthisak P, Rojsitthisak P (2021) Chitosan-Alginate Nanoparticles as Effective Oral Carriers to Improve the Stability, Bioavailability, and Cytotoxicity of Curcumin Diethyl Disuccinate. Carbohydr Polym 256:117426. https://doi.org/10.1016/j.carbpol.2020.117426

    Article  CAS  Google Scholar 

  101. Zhu J, Zheng S, Liu H, Wang Y, Jiao Z, Nie Y, Wang H, Liu T, Song K (2021) Evaluation of Anti-Tumor Effects of Crocin on a Novel 3D Tissue-Engineered Tumor Model Based on Sodium Alginate/Gelatin Microbead. Int J Biol Macromol 174:339–351. https://doi.org/10.1016/j.ijbiomac.2021.01.181

    Article  CAS  Google Scholar 

  102. Mishra A, Pandey VK, Shankar BS, Melo JS (2021) Spray Drying as an Efficient Route for Synthesis of Silica Nanoparticles-Sodium Alginate Biohybrid Drug Carrier of Doxorubicin. Colloids Surf B Biointerfaces 197:111445. https://doi.org/10.1016/j.colsurfb.2020.111445

    Article  CAS  Google Scholar 

  103. Xue Y, Xia X, Yu B, Luo X, Cai N, Long S, Yu FA, Green (2015) Facile Method for the Preparation of a PH-Responsive Alginate Nanogel for Subcellular Delivery of Doxorubicin. RSC Adv 5(90):73416–73423. https://doi.org/10.1039/C5RA13313K

    Article  CAS  Google Scholar 

  104. Gao C, Tang F, Gong G, Zhang J, Hoi MPM, Lee SMY, Wang R (2017) PH-Responsive Prodrug Nanoparticles Based on a Sodium Alginate Derivative for Selective Co-Release of Doxorubicin and Curcumin into Tumor Cells. Nanoscale 9(34):12533–12542. https://doi.org/10.1039/C7NR03611F

    Article  CAS  Google Scholar 

  105. Duo Y, Li Y, Chen C, Liu B, Wang X, Zeng X, Chen H (2017) DOX-Loaded PH-Sensitive Mesoporous Silica Nanoparticles Coated with PDA and PEG Induce pro-Death Autophagy in Breast Cancer. RSC Adv 7(63):39641–39650. https://doi.org/10.1039/C7RA05135B

    Article  CAS  Google Scholar 

  106. Sagdicoglu Celep AG, Demirkaya A, Solak EK (2020) Antioxidant and Anticancer Activities of Gallic Acid Loaded Sodium Alginate Microspheres on Colon Cancer. Curr Appl Phys. https://doi.org/10.1016/j.cap.2020.06.002

    Article  Google Scholar 

  107. Rezk AI, Obiweluozor FO, Choukrani G, Park CH, Kim CS (2019) Drug Release and Kinetic Models of Anticancer Drug (BTZ) from a PH-Responsive Alginate Polydopamine Hydrogel: Towards Cancer Chemotherapy. Int J Biol Macromol 141:388–400. https://doi.org/10.1016/j.ijbiomac.2019.09.013

    Article  CAS  Google Scholar 

  108. Zhang J, Huang J, Huang K, Zhang J, Li Z, Zhao T, Wu J (2019) Egg White Coated Alginate Nanoparticles with Electron Sprayer for Potential Anticancer Application. Int J Pharm 564:188–196. https://doi.org/10.1016/j.ijpharm.2019.04.045

    Article  CAS  Google Scholar 

  109. He Z, Shi Z, Sun W, Ma J, Xia J, Zhang X, Chen W, Huang J (2016) Hemocompatibility of Folic-Acid-Conjugated Amphiphilic PEG-PLGA Copolymer Nanoparticles for Co-Delivery of Cisplatin and Paclitaxel: Treatment Effects for Non-Small-Cell Lung Cancer. Tumor Biol 37(6):7809–7821. https://doi.org/10.1007/s13277-015-4634-1

    Article  CAS  Google Scholar 

  110. Rahimivand M, Tafvizi F, Noorbazargan H (2020) Synthesis and Characterization of Alginate Nanocarrier Encapsulating Artemisia Ciniformis Extract and Evaluation of the Cytotoxicity and Apoptosis Induction in AGS Cell Line. Int J Biol Macromol 158:338–357. https://doi.org/10.1016/j.ijbiomac.2020.05.006

    Article  CAS  Google Scholar 

  111. Talebian S, Shim IK, Kim SC, Spinks GM, Vine KL, Foroughi J (2020) Coaxial Mussel-Inspired Biofibers: Making of a Robust and Efficacious Depot for Cancer Drug Delivery. J Mater Chem B 8(23):5064–5079. https://doi.org/10.1039/D0TB00052C

    Article  CAS  Google Scholar 

  112. Zhong Z, Cai L, Li C (2020) Characterization and Targeting Ability Evaluation of Cell-Penetrating Peptide LyP-1 Modified Alginate-Based Nanoparticles. RSC Adv 10(54):32443–32449. https://doi.org/10.1039/D0RA06628A

    Article  CAS  Google Scholar 

  113. Nguyen C-H, Banh K-S, Dang C-H, Nguyen C-H, Nguyen T-D (2022) β-Cyclodextrin/Alginate Nanoparticles Encapsulated 5-Fluorouracil as an Effective and Safe Anticancer Drug Delivery System. Arab J Chem 15(6):103814. https://doi.org/10.1016/j.arabjc.2022.103814

    Article  CAS  Google Scholar 

  114. Su M, Zhu Y, Chen J, Zhang B, Sun C, Chen M, Yang X (2022) Microfluidic Synthesis of Manganese-Alginate Nanogels with Self-Supplying H2O2 Capability for Synergistic Chemo/Chemodynamic Therapy and Boosting Anticancer Immunity. Chem Eng J 435:134926. https://doi.org/10.1016/j.cej.2022.134926

    Article  CAS  Google Scholar 

  115. Ashrafizadeh M, Mirzaei S, Gholami MH, Hashemi F, Zabolian A, Raei M, Hushmandi K, Zarrabi A, Voelcker NH, Aref AR, Hamblin MR, Varma RS, Samarghandian S, Arostegi IJ, Alzola M, Kumar AP, Thakur VK, Nabavi N, Makvandi P, Tay FR, Orive G (2021) Hyaluronic Acid-Based Nanoplatforms for Doxorubicin: A Review of Stimuli-Responsive Carriers, Co-Delivery and Resistance Suppression. Carbohydr Polym 272:118491. https://doi.org/10.1016/j.carbpol.2021.118491

    Article  CAS  Google Scholar 

  116. Cai J, Fu J, Li R, Zhang F, Ling G, Zhang PA (2019) Potential Carrier for Anti-Tumor Targeted Delivery-Hyaluronic Acid Nanoparticles. Carbohydr Polym 208:356–364. https://doi.org/10.1016/j.carbpol.2018.12.074

    Article  CAS  Google Scholar 

  117. Luo Z, Dai Y, Gao H (2019) Development and Application of Hyaluronic Acid in Tumor Targeting Drug Delivery. Acta Pharm Sin B 9(6):1099–1112. https://doi.org/10.1016/j.apsb.2019.06.004

    Article  Google Scholar 

  118. Zhai P, Peng X, Li B, Liu Y, Sun H, Li X (2020) The Application of Hyaluronic Acid in Bone Regeneration. Int J Biol Macromol 151:1224–1239. https://doi.org/10.1016/j.ijbiomac.2019.10.169

    Article  CAS  Google Scholar 

  119. Wickens JM, Alsaab HO, Kesharwani P, Bhise K, Amin MCIM, Tekade RK, Gupta U, Iyer AK Recent Advances in Hyaluronic Acid-Decorated Nanocarriers for Targeted Cancer Therapy.Drug Discov. Today2017, 22 (4),665–680. https://doi.org/10.1016/j.drudis.2016.12.009

  120. Lee JY, Spicer AP, Hyaluronan (2000) A Multifunctional, MegaDalton, Stealth Molecule. Curr Opin Cell Biol 12(5):581–586. https://doi.org/10.1016/S0955-0674(00)00135-6

    Article  CAS  Google Scholar 

  121. Liu L, Liu Y, Li J, Du G, Chen J (2011) Microbial Production of Hyaluronic Acid: Current State, Challenges, and Perspectives. Microb Cell Fact 10(1):99. https://doi.org/10.1186/1475-2859-10-99

    Article  CAS  Google Scholar 

  122. Kim D-M, Shim YH, Kwon H, Kim J-P, Park J-I, Kim DH, Kim D-H, Kim JH, Jeong Y-I (2019) CD44 Receptor–Specific and Redox-Sensitive Nanophotosensitizers of Hyaluronic Acid–Chlorin E6 Tetramer Having Diselenide Linkages for Photodynamic Treatment of Cancer Cells. J Pharm Sci 108(11):3713–3722. https://doi.org/10.1016/j.xphs.2019.07.024

    Article  CAS  Google Scholar 

  123. Fang Y, Shi L, Duan Z, Rohani S (2021) Hyaluronic Acid Hydrogels, as a Biological Macromolecule-Based Platform for Stem Cells Delivery and Their Fate Control: A Review. Int J Biol Macromol 189:554–566. https://doi.org/10.1016/j.ijbiomac.2021.08.140

    Article  CAS  Google Scholar 

  124. Lee WH, Rho JG, Han HS, Kweon S, Nguyen VQ, Park JH, Kim W (2020) Self-Assembled Hyaluronic Acid Nanoparticle Suppresses Fat Accumulation via CD44 in Diet-Induced Obese Mice. Carbohydr Polym 237:116161. https://doi.org/10.1016/j.carbpol.2020.116161

    Article  CAS  Google Scholar 

  125. Harrer D, Sanchez Armengol E, Friedl JD, Jalil A, Jelkmann M, Leichner C, Laffleur F (2021) Is Hyaluronic Acid the Perfect Excipient for the Pharmaceutical Need? Int J Pharm 601:120589. https://doi.org/10.1016/j.ijpharm.2021.120589

    Article  CAS  Google Scholar 

  126. Yan K, Feng Y, Gao K, Shi X, Zhao X (2022) Fabrication of Hyaluronic Acid-Based Micelles with Glutathione-Responsiveness for Targeted Anticancer Drug Delivery. J Colloid Interface Sci 606:1586–1596. https://doi.org/10.1016/j.jcis.2021.08.129

    Article  CAS  Google Scholar 

  127. Gao C, Wang M, Zhu P, Yan C, Preparation (2021) Characterization and in Vitro Antitumor Activity Evaluation of Hyaluronic Acid-Alendronate-Methotrexate Nanoparticles. Int J Biol Macromol 166:71–79. https://doi.org/10.1016/j.ijbiomac.2020.10.088

    Article  CAS  Google Scholar 

  128. Xu K, Yao H, Fan D, Zhou L, Wei S (2021) Hyaluronic Acid Thiol Modified Injectable Hydrogel: Synthesis, Characterization, Drug Release, Cellular Drug Uptake and Anticancer Activity. Carbohydr Polym 254:117286. https://doi.org/10.1016/j.carbpol.2020.117286

    Article  CAS  Google Scholar 

  129. Ghosh S, Dutta S, Sarkar A, Kundu M, Sil PC (2021) Targeted Delivery of Curcumin in Breast Cancer Cells via Hyaluronic Acid Modified Mesoporous Silica Nanoparticle to Enhance Anticancer Efficiency. Colloids Surf B Biointerfaces 197:111404. https://doi.org/10.1016/j.colsurfb.2020.111404

    Article  CAS  Google Scholar 

  130. Cheng X, Hu T, Li C, Shi S, Xu Y, Jia C, Tang R (2021) Acid-Sensitive and L61-Crosslinked Hyaluronic Acid Nanogels for Overcoming Tumor Drug-Resistance. Int J Biol Macromol 188:11–23. https://doi.org/10.1016/j.ijbiomac.2021.08.004

    Article  CAS  Google Scholar 

  131. Chai Z, Teng C, Yang L, Ren L, Yuan Z, Xu S, Cheng M, Wang Y, Yan Z, Qin C, Han X, Yin L (2020) Doxorubicin Delivered by Redox-Responsive Hyaluronic Acid–Ibuprofen Prodrug Micelles for Treatment of Metastatic Breast Cancer. Carbohydr Polym 245:116527. https://doi.org/10.1016/j.carbpol.2020.116527

    Article  CAS  Google Scholar 

  132. Faraji N, Esrafili A, Esfandiari B, Abednezhad A, Naghizadeh M, Arasteh J (2021) Synthesis of PH-Sensitive Hyaluronic Acid Nanogels Loaded with Paclitaxel and Interferon Gamma: Characterization and Effect on the A549 Lung Carcinoma Cell Line. Colloids Surf B Biointerfaces 205:111845. https://doi.org/10.1016/j.colsurfb.2021.111845

    Article  CAS  Google Scholar 

  133. Gang X, Wang L, Jia J, Wang H, Lian X, Gao X, Niu B, Li W (2021) Synthesis and Biological Evaluation of Fluorescent Hyaluronic Acid Modified Amorphous Calcium Phosphate Drug Carriers for Tumor-Targeting. Int J Biol Macromol 182:1445–1454. https://doi.org/10.1016/j.ijbiomac.2021.05.068

    Article  CAS  Google Scholar 

  134. Rangasami VK, Samanta S, Parihar VS, Asawa K, Zhu K, Varghese OP, Teramura Y, Nilsson B, Hilborn J, Harris RA, Oommen OP (2021) Harnessing Hyaluronic Acid-Based Nanoparticles for Combination Therapy: A Novel Approach for Suppressing Systemic Inflammation and to Promote Antitumor Macrophage Polarization. Carbohydr Polym 254:117291. https://doi.org/10.1016/j.carbpol.2020.117291

    Article  CAS  Google Scholar 

  135. Soleymani M, Velashjerdi M, Asgari M (2021) Preparation of Hyaluronic Acid-Decorated Mixed Nanomicelles for Targeted Delivery of Hydrophobic Drugs to CD44-Overexpressing Cancer Cells. Int J Pharm 592:120052. https://doi.org/10.1016/j.ijpharm.2020.120052

    Article  CAS  Google Scholar 

  136. Kumar AS, Lakshmi S, Rosemary MJ (2021) Ormeloxifene-Hyaluronic Acid Microfibers for Breast Cancer Therapy. Mater. Today Proc. 45, 3800–3804. https://doi.org/10.1016/j.matpr.2021.01.539

  137. Chen Q, Li X, Xie Y, Hu W, Cheng Z, Zhong H, Zhu H (2021) Azo Modified Hyaluronic Acid Based Nanocapsules: CD44 Targeted, UV-Responsive Decomposition and Drug Release in Liver Cancer Cells. Carbohydr Polym 267:118152. https://doi.org/10.1016/j.carbpol.2021.118152

    Article  CAS  Google Scholar 

  138. Lei M, Chen G, Zhang M, Lei J, Li T, Li D, Zheng H (2021) A PH-Sensitive Drug Delivery System Based on Hyaluronic Acid Co-Deliver Doxorubicin and Aminoferrocene for the Combined Application of Chemotherapy and Chemodynamic Therapy. Colloids Surf B Biointerfaces 203:111750. https://doi.org/10.1016/j.colsurfb.2021.111750

    Article  CAS  Google Scholar 

  139. Pan Y-T, Ding Y-F, Han Z-H, Yuwen L, Ye Z, Mok GSP, Li S, Wang L-H (2021) Hyaluronic Acid-Based Nanogels Derived from Multicomponent Self-Assembly for Imaging-Guided Chemo-Photodynamic Cancer Therapy. Carbohydr Polym 268:118257. https://doi.org/10.1016/j.carbpol.2021.118257

    Article  CAS  Google Scholar 

  140. Poudel K, Banstola A, Tran TH, Thapa RK, Gautam M, Ou W, Pham LM, Maharjan S, Jeong J-H, Ku SK, Choi H-G, Yong CS, Kim JO (2020) Hyaluronic Acid Wreathed, Trio-Stimuli Receptive and on-Demand Triggerable Nanoconstruct for Anchored Combinatorial Cancer Therapy. Carbohydr Polym 249:116815. https://doi.org/10.1016/j.carbpol.2020.116815

    Article  CAS  Google Scholar 

  141. Xu R, Zhang K, Liang J, Gao F, Li J, Guan F (2021) Hyaluronic Acid/Polyethyleneimine Nanoparticles Loaded with Copper Ion and Disulfiram for Esophageal Cancer. Carbohydr Polym 261:117846. https://doi.org/10.1016/j.carbpol.2021.117846

    Article  CAS  Google Scholar 

  142. Serini S, Cassano R, Bruni M, Servidio C, Calviello G, Trombino S (2021) Characterization of a Hyaluronic Acid and Folic Acid-Based Hydrogel for Cisplatin Delivery: Antineoplastic Effect in Human Ovarian Cancer Cells in Vitro. Int J Pharm 606:120899. https://doi.org/10.1016/j.ijpharm.2021.120899

    Article  CAS  Google Scholar 

  143. Matha K, Lollo G, Taurino G, Respaud R, Marigo I, Shariati M, Bussolati O, Vermeulen A, Remaut K, Benoit J-P (2020) Bioinspired Hyaluronic Acid and Polyarginine Nanoparticles for DACHPt Delivery. Eur J Pharm Biopharm 150:1–13. https://doi.org/10.1016/j.ejpb.2020.02.008

    Article  CAS  Google Scholar 

  144. Lai H, Ding X, Ye J, Deng J, Cui S (2021) PH-Responsive Hyaluronic Acid-Based Nanoparticles for Targeted Curcumin Delivery and Enhanced Cancer Therapy. Colloids Surf B Biointerfaces 198:111455. https://doi.org/10.1016/j.colsurfb.2020.111455

    Article  CAS  Google Scholar 

  145. Gu H, Ren F, Mao X, Du M, Mineralized (2021) Hyaluronic Acid Based Nano-Carriers for Potentiating Repressive Effects of Sulforaphane on Breast Cancer Stem Cells-like Properties. Carbohydr Polym 269:118294. https://doi.org/10.1016/j.carbpol.2021.118294

    Article  CAS  Google Scholar 

  146. Wang J, Qian Y, Xu L, Shao Y, Zhang H, Shi F, Chen J, Cui S, Chen X, Zhu D, Hu R, Chen Z (2020) Hyaluronic Acid-Shelled, Peptide Drug Conjugate-Cored Nanomedicine for the Treatment of Hepatocellular Carcinoma. Mater Sci Eng C 117:111261. https://doi.org/10.1016/j.msec.2020.111261

    Article  CAS  Google Scholar 

  147. Bhattacharya S, Ghosh A, Maiti S, Ahir M, Debnath GH, Gupta P, Bhattacharjee M, Ghosh S, Chattopadhyay S, Mukherjee P, Adhikary A (2020) Delivery of Thymoquinone through Hyaluronic Acid-Decorated Mixed Pluronic® Nanoparticles to Attenuate Angiogenesis and Metastasis of Triple-Negative Breast Cancer. J Control Release 322:357–374. https://doi.org/10.1016/j.jconrel.2020.03.033

    Article  CAS  Google Scholar 

  148. Bhattacharya DS, Bapat A, Svechkarev D, Mohs AM (2021) Water-Soluble Blue Fluorescent Nonconjugated Polymer Dots from Hyaluronic Acid and Hydrophobic Amino Acids. ACS Omega 6(28):17890–17901. https://doi.org/10.1021/acsomega.1c01343

    Article  CAS  Google Scholar 

  149. Chen K, Chang C, Liu Z, Zhou Y, Xu Q, Li C, Huang Z, Xu H, Xu P, Lu B (2020) Hyaluronic Acid Targeted and PH-Responsive Nanocarriers Based on Hollow Mesoporous Silica Nanoparticles for Chemo-Photodynamic Combination Therapy. Colloids Surf B Biointerfaces 194:111166. https://doi.org/10.1016/j.colsurfb.2020.111166

    Article  CAS  Google Scholar 

  150. Wang J, Muhammad N, Li T, Wang H, Liu Y, Liu B, Zhan H (2020) Hyaluronic Acid-Coated Camptothecin Nanocrystals for Targeted Drug Delivery to Enhance Anticancer Efficacy. Mol Pharm 17(7):2411–2425. https://doi.org/10.1021/acs.molpharmaceut.0c00161

    Article  CAS  Google Scholar 

  151. Thummarati P, Suksiriworapong J, Sakchaisri K, Junyaprasert VB (2021) Effect of Chemical Linkers of Curcumin Conjugated Hyaluronic Acid on Nanoparticle Properties and in Vitro Performances in Various Cancer Cells. J Drug Deliv Sci Technol 61:102323. https://doi.org/10.1016/j.jddst.2021.102323

    Article  CAS  Google Scholar 

  152. Yamana K, Kawasaki R, Sanada Y, Tabata A, Bando K, Yoshikawa K, Azuma H, Sakurai Y, Masunaga S, Suzuki M, Sugikawa K, Nagasaki T, Ikeda A (2021) Tumor-Targeting Hyaluronic Acid/Fluorescent Carborane Complex for Boron Neutron Capture Therapy. Biochem Biophys Res Commun 559:210–216. https://doi.org/10.1016/j.bbrc.2021.04.037

    Article  CAS  Google Scholar 

  153. Xiao T, Hu W, Fan Y, Shen M, Shi X (2021) Macrophage-Mediated Tumor Homing of Hyaluronic Acid Nanogels Loaded with Polypyrrole and Anticancer Drug for Targeted Combinational Photothermo-Chemotherapy. Theranostics 11(14):7057–7071. https://doi.org/10.7150/thno.60427

    Article  CAS  Google Scholar 

  154. Mansoori B, Mohammadi A, Abedi-Gaballu F, Abbaspour S, Ghasabi M, Yekta R, Shirjang S, Dehghan G, Hamblin MR, Baradaran B (2020) Hyaluronic Acid‐decorated Liposomal Nanoparticles for Targeted Delivery of 5‐fluorouracil into HT‐29 Colorectal Cancer Cells. J Cell Physiol 235(10):6817–6830. https://doi.org/10.1002/jcp.29576

    Article  CAS  Google Scholar 

  155. Seifu MF, Nath LK, Dutta D (2020) Hyaluronic Acid-Docetaxel Conjugate Loaded Nanoliposomes For Targeting Tumor Cells. Int J Appl Pharm 88–99. https://doi.org/10.22159/ijap.2020v12i6.39026

  156. Chen G, Zhang Y, Deng H, Tang Z, Mao J, Wang L (2020) Pursuing for the Better Lung Cancer Therapy Effect: Comparison of Two Different Kinds of Hyaluronic Acid and Nitroimidazole Co-Decorated Nanomedicines. Biomed Pharmacother 125:109988. https://doi.org/10.1016/j.biopha.2020.109988

    Article  CAS  Google Scholar 

  157. Yu T, Li Y, Gu X, Li Q (2020) Development of a Hyaluronic Acid-Based Nanocarrier Incorporating Doxorubicin and Cisplatin as a PH-Sensitive and CD44-Targeted Anti-Breast Cancer Drug Delivery System. Front Pharmacol 11. https://doi.org/10.3389/fphar.2020.532457

  158. Lin Y, Li C, Liu A, Zhen X, Gao J, Wu W, Cai W, Jiang X (2021) Responsive Hyaluronic Acid-Gold Cluster Hybrid Nanogel Theranostic Systems. Biomater Sci 9(4):1363–1373. https://doi.org/10.1039/D0BM01815E

    Article  CAS  Google Scholar 

  159. Teng C, Zhang B, Yuan Z, Kuang Z, Chai Z, Ren L, Qin C, Yang L, Han X, Yin L (2020) Fibroblast Activation Protein-α-Adaptive Micelles Deliver Anti-Cancer Drugs and Reprogram Stroma Fibrosis. Nanoscale 12(46):23756–23767. https://doi.org/10.1039/D0NR04465B

    Article  CAS  Google Scholar 

  160. Ji P, Wang L, Chen Y, Wang S, Wu Z, Qi X (2020) Hyaluronic Acid Hydrophilic Surface Rehabilitating Curcumin Nanocrystals for Targeted Breast Cancer Treatment with Prolonged Biodistribution. Biomater Sci 8(1):462–472. https://doi.org/10.1039/C9BM01605H

    Article  CAS  Google Scholar 

  161. Pasteur L On the Viscous Fermentation and the Butyrous Fermentation.Bull. Soc. Chim1861, 11,30–31

  162. Heinze T, Liebert T, Heublein B, Hornig S Functional Polymers Based on Dextran. In Polysaccharides II; Springer Berlin Heidelberg; pp 199–291. https://doi.org/10.1007/12_100

  163. Longley CJ, Fung DPC (1993) Potential Applications and Markets for Biomass-Derived Levoglucosan. Advances in Thermochemical Biomass Conversion. Springer Netherlands, Dordrecht, pp 1484–1494. https://doi.org/10.1007/978-94-011-1336-6_120.

    Chapter  Google Scholar 

  164. Gruber UF, Dextran, the Prevention of Postoperative Thromboembolic Complications (1975) Surg Clin North Am 55(3):679–696. https://doi.org/10.1016/S0039-6109(16)40642-0

    Article  CAS  Google Scholar 

  165. Anirudhan TS, Binusreejayan (2016) Dextran Based Nanosized Carrier for the Controlled and Targeted Delivery of Curcumin to Liver Cancer Cells. Int J Biol Macromol 88:222–235. https://doi.org/10.1016/j.ijbiomac.2016.03.040

    Article  CAS  Google Scholar 

  166. Shingel KI (2002) Determination of Structural Peculiarities of Dexran, Pullulan and γ-Irradiated Pullulan by Fourier-Transform IR Spectroscopy. Carbohydr Res 337(16):1445–1451. https://doi.org/10.1016/S0008-6215(02)00209-4

    Article  CAS  Google Scholar 

  167. Cade´e JA, van Luyn MJA, Brouwer LA, Plantinga JA, van Wachem PB, de Groot CJ (2000) 3; W. den Otter, 3 W.E. Hennink. In Vivo Biocompatibility of Dextran-Based Hydrogels.J Biomed Mater Res50, 397–400

  168. Draye J-P, Delaey B, Van de Voorde A, Van Den Bulcke A, De Reu B, Schacht E (1998) In Vitro and in Vivo Biocompatibility of Dextran Dialdehyde Cross-Linked Gelatin Hydrogel Films. Biomaterials 19(18):1677–1687. https://doi.org/10.1016/S0142-9612(98)00049-0

    Article  CAS  Google Scholar 

  169. Hu Q, Lu Y, Luo Y (2021) Recent Advances in Dextran-Based Drug Delivery Systems: From Fabrication Strategies to Applications. Carbohydr Polym 264:117999. https://doi.org/10.1016/j.carbpol.2021.117999

    Article  CAS  Google Scholar 

  170. De Vuyst L (1999) Heteropolysaccharides from Lactic Acid Bacteria. FEMS Microbiol Rev 23(2):153–177. https://doi.org/10.1016/S0168-6445(98)00042-4

    Article  Google Scholar 

  171. Kothari D, Das D, Patel S, Goyal A (2014) Dextran and Food Application. In Polysaccharides; Springer International Publishing: Cham, ; pp 1–16. https://doi.org/10.1007/978-3-319-03751-6_66-1

  172. Zhang Y, Guo L, Xu D, Li D, Yang N, Chen F, Jin Z, Xu X (2018) Effects of Dextran with Different Molecular Weights on the Quality of Wheat Sourdough Breads. Food Chem 256:373–379. https://doi.org/10.1016/j.foodchem.2018.02.146

    Article  CAS  Google Scholar 

  173. Lacaze G, Wick M, Cappelle S (2007) Emerging Fermentation Technologies: Development of Novel Sourdoughs. Food Microbiol 24(2):155–160. https://doi.org/10.1016/j.fm.2006.07.015

    Article  CAS  Google Scholar 

  174. Maia J, Evangelista MB (2014) Dextran-Based Materials for Biomedical Applications. Carbohydrates Appl Med 37/661(2):31–53

    Google Scholar 

  175. Van Tomme SR, Hennink WE (2007) Biodegradable Dextran Hydrogels for Protein Delivery Applications. Expert Rev Med Devices 4(2):147–164. https://doi.org/10.1586/17434440.4.2.147

    Article  Google Scholar 

  176. Münster L, Fojtů M, Muchová M, Latečka F, Káčerová S, Capáková Z, Juriňáková T, Kuřitka I, Masařík M, Vícha J (2021) Enhancing Cisplatin Anticancer Effectivity and Migrastatic Potential by Modulation of Molecular Weight of Oxidized Dextran Carrier. Carbohydr Polym 272:118461. https://doi.org/10.1016/j.carbpol.2021.118461

    Article  CAS  Google Scholar 

  177. Shaki H, Ganji F, Jafarzadeh-Holagh S, Taebnia N, Dolatshahi-Pirouz A, Vasheghani-Farahani E (2021) A Self Assembled Dextran-Stearic Acid-Spermine Nanocarrier for Delivery of Rapamycin as a Hydrophobic Drug. J Drug Deliv Sci Technol 102768. https://doi.org/10.1016/j.jddst.2021.102768

  178. El-Sayed NS, Sajid MI, Parang K, Tiwari RK (2021) Synthesis, Characterization, and Cytotoxicity Evaluation of Dextran-Myristoyl-ECGKRK Peptide Conjugate. Int J Biol Macromol 191:1204–1211. https://doi.org/10.1016/j.ijbiomac.2021.09.160

    Article  CAS  Google Scholar 

  179. Carneiro MJM, Paula CBA, Ribeiro IS, de Lima LRM, Ribeiro FOS, Silva DA, Araújo GS, Marinho Filho JDB, Araújo AJ, Freire RS, Feitosa JPA, de Paula RCM (2021) Reaction Int J Biol Macromol 185:390–402. https://doi.org/10.1016/j.ijbiomac.2021.06.095. Dual Responsive Dextran-Graft-Poly (N-Isopropylacrylamide)/Doxorubicin Prodrug via Schiff Base

    Article  CAS  Google Scholar 

  180. Shi Y, Tan R, Yu C, Wan Y (2021) Dextran-Polylactide Micelles Loaded with Doxorubicin and DiR for Image-Guided Chemo-Photothermal Tumor Therapy. Int J Biol Macromol 187:296–308. https://doi.org/10.1016/j.ijbiomac.2021.07.141

    Article  CAS  Google Scholar 

  181. Huang S, Liu H, Huang S, Fu T, Xue W, Guo R (2020) Dextran Methacrylate Hydrogel Microneedles Loaded with Doxorubicin and Trametinib for Continuous Transdermal Administration of Melanoma. Carbohydr Polym 246:116650. https://doi.org/10.1016/j.carbpol.2020.116650

    Article  CAS  Google Scholar 

  182. Abid M, Naveed M, Azeem I, Faisal A, Faizan Nazar M, Yameen B (2020) Colon Specific Enzyme Responsive Oligoester Crosslinked Dextran Nanoparticles for Controlled Release of 5-Fluorouracil. Int J Pharm 586:119605. https://doi.org/10.1016/j.ijpharm.2020.119605

    Article  CAS  Google Scholar 

  183. Liu L, Bao Y, Zhang Y, Xiao C, Chen L (2020) Acid-Responsive Dextran-Based Therapeutic Nanoplatforms for Photodynamic-Chemotherapy against Multidrug Resistance. Int J Biol Macromol 155:233–240. https://doi.org/10.1016/j.ijbiomac.2020.03.197

    Article  CAS  Google Scholar 

  184. Zeng X, Cheng X, Zheng Y, Yan G, Wang X, Wang J, Tang R (2020) Indomethacin-Grafted and PH-Sensitive Dextran Micelles for Overcoming Inflammation-Mediated Multidrug Resistance in Breast Cancer. Carbohydr Polym 237:116139. https://doi.org/10.1016/j.carbpol.2020.116139

    Article  CAS  Google Scholar 

  185. Tiryaki E, Başaran Elalmış Y, Karakuzu İkizler B, Yücel S (2020) Novel Organic/Inorganic Hybrid Nanoparticles as Enzyme-Triggered Drug Delivery Systems: Dextran and Dextran Aldehyde Coated Silica Aerogels. J Drug Deliv Sci Technol 56:101517. https://doi.org/10.1016/j.jddst.2020.101517

    Article  CAS  Google Scholar 

  186. Kanwal S, Naveed M, Arshad A, Arshad A, Firdous F, Faisal A, Yameen B (2021) Reduction-Sensitive Dextran–Paclitaxel Polymer–Drug Conjugate: Synthesis, Self-Assembly into Nanoparticles, and In Vitro Anticancer Efficacy. Bioconjug Chem 32(12):2516–2529. https://doi.org/10.1021/acs.bioconjchem.1c00492

    Article  CAS  Google Scholar 

  187. El Founi M, Laroui H, Canup BSB, Ametepe JS, Vanderesse R, Acherar S, Babin J, Ferji K, Chevalot I, Six J-L (2021) Doxorubicin Intracellular Release Via External UV Irradiation of Dextran- g -Poly(o -Nitrobenzyl Acrylate) Photosensitive Nanoparticles. ACS Appl Bio Mater 4(3):2742–2751. https://doi.org/10.1021/acsabm.0c01644

    Article  CAS  Google Scholar 

  188. Zhao J, Li Y, Liu Z-X, Huang M-H, Xu Y, Liang Q, Chen L, Luo R, Tang Q (2020) Nanosized Drug-Eluting Bead for Transcatheter Arterial Chemoembolization (ND-TACE). J Mater Chem B 8(37):8684–8694. https://doi.org/10.1039/D0TB01295E

    Article  CAS  Google Scholar 

  189. Zhang Q, He S, Kuang G, Liu S, Lu H, Li X, Zhou D, Huang Y Morphology Tunable and Acid-Sensitive Dextran–Doxorubicin Conjugate Assemblies for Targeted Cancer Therapy.J. Mater. Chem. B2020, 8 (31),6898–6904. https://doi.org/10.1039/D0TB00746C

  190. Zhang T, Wang Y, Ma X, Hou C, Lv S, Jia D, Lu Y, Xue P, Kang Y, Xu Z (2020) A Bottlebrush-Architectured Dextran Polyprodrug as an Acidity-Responsive Vector for Enhanced Chemotherapy Efficiency. Biomater Sci 8(1):473–484. https://doi.org/10.1039/C9BM01692A

    Article  CAS  Google Scholar 

  191. Zhang T, Ma X, Bai S, Wang Y, Zhang X, Lu Y, Wen F, Xue P, Kang Y, Xu Z (2020) Reactive Oxygen Species-Activatable Camptothecin Polyprodrug Based Dextran Enhances Chemotherapy Efficacy by Damaging Mitochondria. J Mater Chem B 8(6):1245–1255. https://doi.org/10.1039/C9TB02199J

    Article  CAS  Google Scholar 

  192. Braga CB, Kido LA, Lima EN, Lamas CA, Cagnon VHA, Ornelas C, Pilli RA (2020) Enhancing the Anticancer Activity and Selectivity of Goniothalamin Using PH-Sensitive Acetalated Dextran (Ac-Dex) Nanoparticles: A Promising Platform for Delivery of Natural Compounds. ACS Biomater Sci Eng 6(5):2929–2942. https://doi.org/10.1021/acsbiomaterials.0c00057

    Article  CAS  Google Scholar 

  193. Xue X, Wu Y, Xu X, Xu B, Chen Z, Li T (2021) PH and Reduction Dual-Responsive Bi-Drugs Conjugated Dextran Assemblies for Combination Chemotherapy and In Vitro Evaluation. Polym (Basel) 13(9):1515. https://doi.org/10.3390/polym13091515

    Article  CAS  Google Scholar 

  194. Curcio M, Cirillo G, Tucci P, Farfalla A, Bevacqua E, Vittorio O, Iemma F, Nicoletta FP (2019) Dextran-Curcumin Nanoparticles as a Methotrexate Delivery Vehicle: A Step Forward in Breast Cancer Combination Therapy. Pharmaceuticals 13(1):2. https://doi.org/10.3390/ph13010002

    Article  CAS  Google Scholar 

  195. Ram Prasad S, Jayakrishnan A, Sampath Kumar TS (2020) Hydroxyapatite-Dextran Methacrylate Core/Shell Hybrid Nanocarriers for Combinatorial Drug Therapy. J Mater Res 35(18):2451–2465. https://doi.org/10.1557/jmr.2020.193

    Article  CAS  Google Scholar 

  196. Shoaib M, Shehzad A, Omar M, Rakha A, Raza H, Sharif HR, Shakeel A, Ansari A, Niazi S, Inulin (2016) Properties, Health Benefits and Food Applications. Carbohydr Polym 147:444–454. https://doi.org/10.1016/j.carbpol.2016.04.020

    Article  CAS  Google Scholar 

  197. Gonçalves FJ, Fernandes PAR, Wessel DF, Cardoso SM, Rocha SM, Coimbra MA (2018) Interaction of Wine Mannoproteins and Arabinogalactans with Anthocyanins. Food Chem 243:1–10. https://doi.org/10.1016/j.foodchem.2017.09.097

    Article  CAS  Google Scholar 

  198. Ganie SA, Ali A, Mir TA, Mazumdar N, Preparation (2020) Characterization and Release Studies of Folic Acid from Inulin Conjugates. Int J Biol Macromol 153:1147–1156. https://doi.org/10.1016/j.ijbiomac.2019.10.244

    Article  CAS  Google Scholar 

  199. Hirst EL, McGilvray DI, Percival EG (1950) V. 263. Studies on Fructosans. Part I. Inulin from Dahlia Tubers. J Chem Soc 1297. https://doi.org/10.1039/jr9500001297

  200. De Bruyn A, Alvarez AP, Sandra P, De Leenheer L (1992) Isolation and Identification of O-β-d-Fructofuranosyl-(2 → 1)-O-β-d-Fructofuranosyl-(2 → 1)-d-Fructose, a Product of the En. Carbohydr Res 235:303–308. https://doi.org/10.1016/0008-6215(92)80099-M

    Article  Google Scholar 

  201. Ganie SA, Ali A, Mir TA, Mazumdar N (2021) Inulin–Niacin Conjugates: Preparation, Characterization, Kinetic and In Vitro Release Studies. J Polym Environ. https://doi.org/10.1007/s10924-021-02210-6

    Article  Google Scholar 

  202. Shao T, Yuan P, Zhang W, Dou D, Wang F, Hao C, Liu C, Han J, Chen K, Wang G (2021) Preparation and Characterization of Sulfated Inulin-Type Fructans from Jerusalem Artichoke Tubers and Their Antitumor Activity. Carbohydr Res 509:108422. https://doi.org/10.1016/j.carres.2021.108422

    Article  CAS  Google Scholar 

  203. Jangid AK, Patel K, Jain P, Patel S, Gupta N, Pooja D, Kulhari H (2020) Inulin-Pluronic-Stearic Acid Based Double Folded Nanomicelles for PH-Responsive Delivery of Resveratrol. Carbohydr Polym 247:116730. https://doi.org/10.1016/j.carbpol.2020.116730

    Article  CAS  Google Scholar 

  204. Carla Sardo T, Mencherini C, Tommasino T, Esposito P, Russo PD, Gaudio RPA (2021) Inulin-g-Poly-D,L-Lactide, a Sustainable Amphiphilic Copolymer for Nano-Therapeutics. Drug Deliv Transl Res 12:8

    Google Scholar 

  205. Yang Y, Tan W, Zhang J, Guo Z, Jiang A, Li Q (2022) Novel Coumarin-Functionalized Inulin Derivatives: Chemical Modification and Antioxidant Activity Assessment. Carbohydr Res 518:108597. https://doi.org/10.1016/j.carres.2022.108597

    Article  CAS  Google Scholar 

  206. Jangid AK, Solanki R, Patel S, Pooja D, Kulhari H (2022) Genistein Encapsulated Inulin-Stearic Acid Bioconjugate Nanoparticles: Formulation Development, Characterization and Anticancer Activity. Int J Biol Macromol 206:213–221. https://doi.org/10.1016/j.ijbiomac.2022.02.031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support of this study provided by Southwest University Chongqing, China as Postdoctoral Fellows for Showkat Ali Ganie and Luqman Jameel Rather are highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Li.

Ethics declarations

Declaration of Competing Interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganie, S.A., Rather, L.J. & Li, Q. Recent Innovations in the Strategies for the Functionalization of Chitosan, Pectin, Alginate, Hyaluronic Acid, Dextran and Inulin Biomaterials for Anticancer Applications-A Review. J Polym Environ 31, 13–35 (2023). https://doi.org/10.1007/s10924-022-02547-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02547-6

Keywords

Navigation