Skip to main content

Advertisement

Log in

Exploring the Potential of Moi Gum for Diverse Applications: A Review

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Large number of plants exudate complex polysaccharides as a consequence of mechanical/micro-biological injury. Exudates of gums are always in high demand for usage as food additives, emulsifiers and other applications and in pharmaceutical field as they are non-toxic, economically viable, readily available and are safe enough for human consumption. Many species of exudate gums have been reported to have therapeutic application and Moi gum is one of them. Moi gum is classified as Arabino-galactan, similar to Gum Arabic, is an unexplored minor gum. Different aerial portions of the plants are used in varied ways in medicinal field. The plant is reported to contain gums and mucilages which yields Arabino-3, 6-galactan on hydrolysis. It contains l-rhamnose with 2.5%, l-arabinose with 11%, 4-O-methyl uronic acids with 17% and d-galactose being the major portion with 69.5%. The gum also yields 1.38% of Proteins. Since this gum is similar to Gum Arabic and is not yet extensively used, it remained unexplored in the field of agriculture and in industries such as textiles, paper, cosmetics, drug delivery, confectionaries and pharmaceuticals. This article would serve as reference to researchers who are involved in biopolymer studies leading to commercialization of Moi gum in various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdullah AL, Agho MO, Amos S, Gamanieland KS, Watanabe C (2001) Antidiarrheal activity of the aqueous extract of Terminalia avicemmoides roots. Phytother Res 15(5):431–434

    Google Scholar 

  2. Cragg GM, Newman DJ (2000) Antineoplastic agents from natural sources: achievements and future directions. Expect Opine Invest Drugs 9:1–15

    Google Scholar 

  3. Srivastava J, Lambert J, Vietmeyer N (1996) Medicinal plants: an expanding role in development. World Bank, Washington, D.C.

    Google Scholar 

  4. Narayana DBA, Katayar CK, Brindavanam NB (1998) Original system: search, research or re-search. IDMA Bull 29:413–416

    Google Scholar 

  5. Prabhat KR, Lalramnghinglova H (2010) Ethnomedicinal plant resources of Mizoram, India: implication of traditional knowledge in health care system. Ethnobot Leafl 14:274–305

    Google Scholar 

  6. Reddy AK, Joy JM, Kumar A (2011) Lannea coromandelica: The researcher's tree. J Pharm Res 4:577–579

    CAS  Google Scholar 

  7. Reddy K, Mohan GK, Satla S, Gaikwad S (2011) Natural Polysaccharides: Versatile Excipients for controlled drug delivery systems. Asian Journal of Pharmaceutical Sciences. Asian J Pharm Sci 6(6):275–286

    Google Scholar 

  8. Jani GK, Shah DP, Prajapati Vipul D, Jain Vineet C (2009) Gums and mucilages: versatile excipients for pharmaceutical formulations. Asian J Pharm Sci 4(5):308–322

    Google Scholar 

  9. Giriraj KT, Gowthamarajan K, Kumar M N, Suresh B et al (2002) Therapeutics and pharmaceutical application. Natural Product Radiance. 1st edn. p 60

  10. Mishra A, Malhotra AJ (2009) Tamarind xyloglucan: a polysaccharide with versatile application potential. J Mater Chem 19:8528–8536

    CAS  Google Scholar 

  11. Ofori-Kwakye K, Asantewaa Y, Kipo SL (2010) Physicochemical and binding properties of cashew tree gum in metronidazole tablet formulations. Int J Pharm Pharm Sci 2(4):105–109

    CAS  Google Scholar 

  12. Sunil G, Sonali N (2014) Natural gums and its pharmaceutical application. J Sci Innov Res 3(1):112–121

    Google Scholar 

  13. Weller PJ, Owen SC (2003) Polyvinyl alcohol. In: Raymond CR, Paul JS, Paul JW (eds) Handbook of pharmaceutical excipients, 6th edn. The Pharmaceutical Press and the American Pharmaceutical Association, London, pp 564–565

    Google Scholar 

  14. Samanta A, Ojha D, Mukherjee B (2010) Stability analysis of primary emulsion using a new emulsifying agent gum Odina. Nat Sci 2(5):494–505

    CAS  Google Scholar 

  15. Yogi RK, Alok K, Jaiswal AK (2015) Lac, plant resins and gums statistics: at a glance. ICAR-Indian Institute of Natural Resins and Gums, Ranchi, p 44

    Google Scholar 

  16. Mukherjee B, Samanta A, Dinda SC (2006) Gum odina-a new tablet binder. Trends Appl Sci Res 1(4):309–316

    CAS  Google Scholar 

  17. Nayak BS, Nayak UK, Patro KB, Rout PK (2008) Preparation and in vitro evaluation of lamivudine entrapped MOI microspheres for oral administration. Res J Pharm Tech 1:437–441

    Google Scholar 

  18. Venkaiah K, Shah JJ (1984) Distribution, development and structure of gum ducts in Lannea coromandelica (Houtt.) merril. Ann Bot 54:175–186

    Google Scholar 

  19. Nayak BS, Nayak UK, Patro KB, Rout PK (2008) Design and evaluation of controlled release Bhara microcapsules of famotidine for oral use. Res J Pharm Tech 1:433–436

    Google Scholar 

  20. Avinash RGK, Jyothi MJ, Arun RC, Ashok K (2011) Pharmacognostical and phytochemical study on the leaves of Lannea coromandelica (houtt.) Merr. Int J Pharm Pract Drug Res 1(1):14–20

    Google Scholar 

  21. Perez S, Mazeau K, Herve du Penhoat C (2000) The three-dimensional structures of the pectic polysaccharides. Plant Physiol Biochem 38:37–55

    CAS  Google Scholar 

  22. Anderson DMW, Stoddart JF (1996) Studies on uronic acid materials. Carbohydr Res 2:104–114

    Google Scholar 

  23. Verbeken D, Dierckx S, Dewettinck K (2003) Exudate gums: occurrence, production, and applications. Appl Microbiol Biotechnol 63:10–21

    CAS  PubMed  Google Scholar 

  24. Idris OHM, Williams PA, Phillips GO (1998) Characterization of gum from Acacia senegal trees of different age and location using multi detection gel permeation chromatography. Food Hydrocoll 12:379–388

    CAS  Google Scholar 

  25. Dagnew Y, Lemenihb M, Feleke S (2009) Characteristics and quality of gum arabic from naturally grown Acacia senegal (Linne) Wild trees in the Central Rift Valley of Ethiopia. Food Hydrocoll 23:175–180

    Google Scholar 

  26. Bhattacharya AK, Rao CVN (1964) Gum joel: the structure of the degraded derived from it. Can J Chem 42:107–112

    Google Scholar 

  27. Avinash KR, Joy JM, Kumara CA (2011) Lannea coromandelica: the researcher’s tree. J Pharm Res 4(3):577–579

    Google Scholar 

  28. Yusuf M, Chowdhury JU, Wahab MA, Begum J (1994) Medicinal plants of Bangladesh. Bangladesh Centre for Scientific and Industrial Research, Dhaka, p 146

    Google Scholar 

  29. Yusuf M, Begum J, Hoque MN, Chowdhury JU (2009) Medicinal Plants of Bangladesh. Bangladesh Counc Sci Ind Res 318:217–224

    Google Scholar 

  30. Zheng XL, Xing FW (2009) Ethnobotanical study on medicinal plants around Mt. Yinggeling, Hainan Island China. J Ethnopharmacol 124:197–210

    PubMed  Google Scholar 

  31. Subramanian SS, Nair AGR (1971) Polyphenols of Lannea coromandelica. Phyto Chem 10:1939–1940

    CAS  Google Scholar 

  32. Ghani A (2003) Medicinal Plants of Bangladesh with chemical constituents and uses, 2nd edn. Asiatic Society of Bangladesh, Dhaka, p 274

    Google Scholar 

  33. Kantamreddi VSSN, Lakshmi YN, Kasapu VVVS (2010) Preliminary phytochemical analysis of some important Indian plant species. IJPBS 1:358

    Google Scholar 

  34. Franco FM, Narasimhan D (2009) Plant names and uses as indicators of knowledge patterns. Indian J Tradit Knowl 8:645–648

    Google Scholar 

  35. Chopra RN, Nayar SL, Chopra IC (1956) Glossary of Indian Medicinal Plants. CSIR, New Delhi

    Google Scholar 

  36. Singh S, Singh GB (1996) Hypotensive activity of Lannea coromandelica bark extract. Phytother Res 10(5):429–430

    Google Scholar 

  37. Sathish R, Mohd HA, Natarajan K, Lalitha KG (2010) Evaluation of wound healing and antimicrobial activity of Lannea coromandelica (Houtt) Merr. J Pharm Res 3(6):1225–1228

    Google Scholar 

  38. Kadir MF, Sayeed MSB, Mia MMK (2013) Ethno-pharmacological survey of medicinal plants used by traditional healers in Bangladesh for gastrointestinal disorders. J Ethno-Pharm 147:148–156

    Google Scholar 

  39. Singh S, Singh GB (1994) Anti-inflammatory activity of Lannea coromandelica bark extract in rats. Phytother Res 8:311–313

    Google Scholar 

  40. Jain SK (1994) Ethnobotany and research on medicinal plants in India. Ciba Found Symp 185:153–164

    CAS  PubMed  Google Scholar 

  41. Islam MT, Tahara S (2000) Phytochemistry 54:901–907

    CAS  PubMed  Google Scholar 

  42. Bhattacharjee SK (1998) Handbook of medicinal plants. Pointer publishers, Jaipur, p 201

    Google Scholar 

  43. Thyagarajan R, Jaibala S, Balakrishnan GA (1975) Hand book of common remedies in Siddha system of medicine. Central Council for Research in Indian Medicine and Homoeopathy Ministry of health and family planning, Govt of India, New Delhi

    Google Scholar 

  44. Saravanan S, Dhasarathan P, Indira V, Venkataraman R (2010) Screening of anti-inflammatory potential of chosen medicinal plants using swiss albino mice. Aust J Basic Appl Sci 4:6065–6068

    CAS  Google Scholar 

  45. Jain SK, Tarafder CR (1970) Medicinal plants-lore of the sandals-a revival of PO Bodding's work. Econ Bot 24:241–278

    Google Scholar 

  46. Shah GL, Yadav SS, Badri N (1983) Medicinal plants from Dahanu forest division in Maharashtra state. J Econ Tax Bot 4:141–151

    Google Scholar 

  47. Venkata PK, Venkata RK, Venkata RR (2008) Preliminary phytochemical evaluation of certain anticancer crude drugs used by adivasis of rayalaseema region, Andhra Pradesh, India. Ethnobot Leafl 12:693–697

    Google Scholar 

  48. Carvalho M, Ferreira PJ, Mendes VS, Silva R, Pereira JA, Jerónimo C et al (2010) Human cancer cell antiproliferative and antioxidant activities of Juglans regia L (containing Quercetin-3-arabinoside). Food Chem Toxicol 48:441–447

    CAS  PubMed  Google Scholar 

  49. Rastogi R, Dhawan BN (1990) Anticancer and antiviral activity in Indian medicinal plant Lannea coromandelica. Drug Dev Res 19:1–12

    CAS  Google Scholar 

  50. Aditya KJ, Mousumi D, Arnab DE, Samanta A (2014) Determination of efficacy of a natural tablet binder: characterization and invitro release study. Asian J Pharm Clin Res 7(3):164–168

    Google Scholar 

  51. Rajendra P, Tamiz MT (2014) Pharmacognostical studies on the bark of odina wodier, roxb., (Anacardiaceae). Int J Res Pharm Chem 4(1):1–10

    Google Scholar 

  52. Chidanbarathanu S (1995) Index of herbs in languages. Siddha Medical Literature Research Centre, Madras

    Google Scholar 

  53. Nema S, Patel SN, Shaw SS, Modi RS (2011) Natural gum yielding trees for income generation and livelihood support of tribals in Chhattisgarh, Indian Forest Congress pp. 22–25

  54. Sowdhamini VURM, Sirisha B, Pratyusha A (2015) An overview on natural polymers as pharmaceutical excipient. Intercont J Pharm Investig Res 2:35–48

    Google Scholar 

  55. Dionísio M, Grenha A (2012) Locust bean gum: exploring its potential in biopharmaceutical application. J Pharm Bioallied Sci 4(3):175–185

    PubMed  PubMed Central  Google Scholar 

  56. Dickinson E (1988) The role of hydrocolloids in stabilising particulate dispersions and emulsions. In: Phillips GO, Williams PA, Wedlock DJ (eds) Gums and stabilisers for the food industry, 4th edn. IRL Press, Oxford, pp 249–263

    Google Scholar 

  57. Sadek ZI, El-Shafei K, Murad HA (2006) Utilization of xanthan gum and inulin as prebiotics for lactic acid bacteria. Dtsch Lebensm-Rundsch 102:109–114

    CAS  Google Scholar 

  58. Deshmukh T, Patil P, Thakare V, Tekade B et al (2011) Evaluation of binding properties of Butea monosperma Lam, Gum in tablet formulation. Int J Drug Discov Herb Res 1(3):128–133

    Google Scholar 

  59. Arul KSG, Palanisamy S, Rajasekaran A et al (2010) Evaluation of Cassia roxburghii seed gum as binder in tablet formulations of selected drugs. Int J Pharm Sci Nanotechnol 2(4):726–732

    CAS  Google Scholar 

  60. Singh AR, Selvam RP, Shivkumar T et al (2010) Isolation & characterization & formulation properties of natural Gum obtained from Mangnifer indica. Int J Pharm Biomed Res 1(2):35–41

    CAS  Google Scholar 

  61. Kwakye OK, Asantewaa Y, Kipo SM (2010) Physiochemical and binding properties of Cashew Tree gum in Metronidazole tablet formulation. Int J Pharm Pharm Sci 2(4):105–109

    Google Scholar 

  62. Prasanthi NL, Manikiran SS, Rao NR (2011) Invitro drug release studies of Ziprasidone from tablets using natural gums from biosphere. Scholars Res Libr 3(2):513–519

    CAS  Google Scholar 

  63. Maqbool M, Ali A, Alderson PG, Zahid N, Siddiqui Y (2011) Effect of a novel edible composite coating based on gum arabic and chitosan on biochemical and physiological responses of banana fruits during cold storage. J Agric Food Chem 59:5474–5482

    CAS  PubMed  Google Scholar 

  64. Ali A, Maqbool M, Ramachandran S, Alderson PG (2010) Gum Arabic as a novel edible coating for enhancing shelf-life and improving post-harvest quality of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol Technol 58:42–47

    CAS  Google Scholar 

  65. Ogaji IJ, Okafor IS, Hoag SW (2013) Grewia gum as a film coating agent in theophylline tablet formulation: properties of theophylline tablets coated with grewia gum as a film coating agent. J Pharm Bioallied Sci 5(1):53–60

    PubMed  PubMed Central  Google Scholar 

  66. Mankala SK, Nagamalli NK, Raprla R, Kommula R (2011) Preparation and Characterization of Mucoadhesive Microcapsules of Gliclazide with Natural Gums. Stamoford J Pharm Sci 4(1):38–48

    CAS  Google Scholar 

  67. Tadesse W, Desalegn G, Alia R (2007) Natural gum and resin bearing species of Ethiopia and their potential applications. Instituto Nacional de Investigacióny Tecnología Agraria y Alimentaria 16:211–221

    Google Scholar 

  68. Wyasu G, Okereke NZJ (2012) Improving the film forming ability of gum Arabic. J Nat Prod Plant Resour 2:314–317

    CAS  Google Scholar 

  69. Kulkarni RV, Setty CM, Sa B (2010) Polyacrylamide-g-alginate-based electrically responsive hydrogel for drug delivery application: Synthesis, characterization, and formulation development. J Appl Polym Sci 115:1180–1188

    CAS  Google Scholar 

  70. Kaith BS, Jindal R, Mittal H (2010) Superabsorbent hydrogels from poly (acrylamide-co-acrylonitrile) grafted Gum ghatti with salt, pH and temper-ature responsive properties. Der Chem Sin 1(2):92–103

    CAS  Google Scholar 

  71. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339

    CAS  PubMed  Google Scholar 

  72. Mahdavinia GR, Zohuriaan-Mehr MJ, Pourjavadi A (2004) Modified chitosan. III. Superabsorbency, salt- and pH-sensitivity of smart ampholytic hydrogels from chitosangpolyacrylonitrile. Polym Adv Technol 15:173–180

    CAS  Google Scholar 

  73. Odian G (2002) Principles of polymerization, 3rd edn. Wiley, New York

    Google Scholar 

  74. Mishra S, Sen G (2011) Microwave initiated synthesis of polymethylmethacrylate grafted Guar (GG-g-PMMA), characterizations and applications. Int J Biol Macromol 48:688–769

    CAS  PubMed  Google Scholar 

  75. Mishra S, Mukul A, Sen G, Jha U (2011) Microwave assisted synthesis of polyacrylamide grafted starch (St-g-PAM) and its applicability as flocculent for water treatment. Int J Biol Macromol 48:106–111

    CAS  PubMed  Google Scholar 

  76. Thombare N, Jha U, Mishra S, Siddiqui MZ (2016) Guar gum as a promising starting material for diverse applications: a review. Int J Biol Macromol 88:361–372

    CAS  PubMed  Google Scholar 

  77. Lee CS, Robinson J, Chong MF (2014) A review on application of flocculants in wastewater treatment. Process Saf Environ Prot 92:489–508

    CAS  Google Scholar 

  78. Maia AMS, Silva HVM, Curti PS, Balaban RC (2012) Study of the reaction of grafting acrylamide onto xanthan gum. Carbohyd Polym 90(2):778–783

    CAS  Google Scholar 

  79. Rath SK, Singh RP (1998) On the characterization of grafted and ungrafted starch, amylose, and amylopectin. J Appl Polym Sci 70(9):1795–1810

    CAS  Google Scholar 

  80. Bhat NR, Suleiman MK, Abdal M (2009) Selection of crops for sustainable utilization of Land and Water resources in Kuwait. World J of Agric Sci 5(2):201–206

    CAS  Google Scholar 

  81. Petruzzelli DA, Volpe AC, Di Pinto, Passino R (2000) Conservative technologies for environmental protection based on the use of reactive polymers. React Funct Polym 45:95–107

    CAS  Google Scholar 

  82. Varshosaz J, Tavakoli N, Eram SA (2006) Use of natural gums and cellulose derivatives in production of sustained release metoprolol tablets. Drug Deliv 13:113–119

    CAS  PubMed  Google Scholar 

  83. Akelah A (1990) Applications of functionalized polymers in agriculture. J Islam Acad Sci 3(1):49–61

    Google Scholar 

  84. Dragan ES, Apopei DF (2011) Synthesis and swelling behavior of pH-sensitive semi-interpenetrating polymer network composite hydrogels based on native and modified potatoes starch as potential sorbent for cationic dyes. Chem Eng J 178(1):252–263

    CAS  Google Scholar 

  85. Ni BL, Liu MZ, Lü SY (2009) Multifunctional slow-release urea fertilizer from ethylcellulose and superabsorbent coated formulations. Chem Eng J 155:892–898

    CAS  Google Scholar 

  86. Kosemund K, Schlatter H, Ochsenhirt JL, Krause EL, Marsman DS, Erasala GN (2008) Safety evaluation of superabsorbent baby diapers. Regul Toxicol Pharm 53:81–89

    Google Scholar 

  87. Chauhan K, Chauhan GS, Ahn JH (2009) Synthesis and characterization of novel guar gum hydrogels and their use as Cu2+ sorbents. Bioresour Technol 100:3599–3603

    CAS  PubMed  Google Scholar 

  88. Murthy PSK, Mohan YM, Varaprasad K, Sreedhar Band Raju KM (2008) First successful design of semi-IPN hydrogel–silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci 100:3654–3663

    Google Scholar 

  89. Sadeghi M, Hosseinzadeh HJ (2008) Synthesis of starch poly(sodium acrylate-coacrylamide) superabsorbent hydrogel with salt and pH-responsiveness properties as a drug delivery system. J Bioact Compat Polym 23:381–404

    CAS  Google Scholar 

  90. Malik MA, Ahmed M, Ejaz-ur-Rehman (2003) Synthesis of superabsorbent copolymers by pulsed corona discharges in water. Plasmas Polym 8(8):271–279

    CAS  Google Scholar 

  91. Pourjavadi A, Zohuriaan-Mehr MJ, Ghasempoori SN (2007) Modified CMC. V. Synthesis and super-swelling behavior of hydrolyzed CMC-g-PAN hydrogel. J Appl Polym Sci 103(2):877–883

    CAS  Google Scholar 

  92. Kiatkamjornwong S, Mongkolsawat K, Sonsuk M (2002) Synthesis and property characterization of cassava starch grafted poly[acrylamide-co-(maleic acid)] superabsorbent via g-irradiation. Polymer 43:3915–3924

    CAS  Google Scholar 

  93. Cano AI, Cháfer M, Chiralt A, González-Martínez C (2015) Physical and microstructural properties of biodegradable films based on pea starch and PVA. J Food Eng 167:59–64

    CAS  Google Scholar 

  94. Mishra RK, Patra BK (2017) Vegetation analysis: a tool for restoration of degraded habitats of Raikela Iron Ore Mines Sundergarh Odisha. Int J Environ Sci Nat Resour. https://doi.org/10.19080/IJESNR.2017.05.555674

    Article  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to Department of Chemistry, BIT Mesra for the support bestowed during the work. Ch. Jamkhokai Mate also acknowledges the support of ICAR-IINRG Namkum for providing study leave to carry out his Doctoral research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mate, C.J., Mishra, S. Exploring the Potential of Moi Gum for Diverse Applications: A Review. J Polym Environ 28, 1579–1591 (2020). https://doi.org/10.1007/s10924-020-01709-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01709-8

Keywords

Navigation