Skip to main content
Log in

High-Frequency Asymptotic Compression of Dense BEM Matrices for General Geometries Without Ray Tracing

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Wave propagation and scattering problems in acoustics are often solved with boundary element methods. They lead to a discretization matrix that is typically dense and large: its size and condition number grow with increasing frequency. Yet, high frequency scattering problems are intrinsically local in nature, which is well represented by highly localized rays bouncing around. Asymptotic methods can be used to reduce the size of the linear system, even making it frequency independent, by explicitly extracting the oscillatory properties from the solution using ray tracing or analogous techniques. However, ray tracing becomes expensive or even intractable in the presence of (multiple) scattering obstacles with complicated geometries. In this paper, we start from the same discretization that constructs the fully resolved large and dense matrix, and achieve asymptotic compression by explicitly localizing the Green’s function instead. This results in a large but sparse matrix, with a faster associated matrix-vector product and, as numerical experiments indicate, a much improved condition number. Though an appropriate localisation of the Green’s function also depends on asymptotic information unavailable for general geometries, we can construct it adaptively in a frequency sweep from small to large frequencies in a way which automatically takes into account a general incident wave. We show that the approach is robust with respect to non-convex, multiple and even near-trapping domains, though the compression rate is clearly lower in the latter case. Furthermore, in spite of its asymptotic nature, the method is robust with respect to low-order discretizations such as piecewise constants, linears or cubics, commonly used in applications. On the other hand, we do not decrease the total number of degrees of freedom compared to a conventional classical discretization. The combination of the sparsifying modification of the Green’s function with other accelerating schemes, such as the fast multipole method, appears possible in principle and is a future research topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Alouges, F., Aussal, M.: The sparse cardinal sine decomposition and its application for fast numerical convolution. Numer. Algorithms 70, 427–448 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anand, A., Boubendir, Y., Ecevit, F., Reitich, F.: Analysis of multiple scattering iterations for high-frequency scattering problems. II: the three-dimensional scalar case. Numer. Math. 114, 373–427 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asheim, A., Huybrechs, D.: Extraction of uniformly accurate phase functions across smooth shadow boundaries in high frequency scattering problems. SIAM J. Appl. Math. 74(2), 454–476 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babich, V.M., Buldyrev, V.S.: Short-Wavelength Diffraction Theory. Springer, Berlin (1991)

    Book  Google Scholar 

  5. Bebendorf, M.: Hierarchical LU decomposition-based preconditioners for BEM. Computing 74, 225–247 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bleistein, N., Handelsman, R.A.: Asymptotic Expansions of Integrals. Dover Publications Inc, Mineola (1986)

    MATH  Google Scholar 

  7. Brakhage, H., Werner, P.: Über das Dirichletsche Außenraumproblem für die Helmholtzsche Schwingungsgleichung. Arch. Math. 16, 325–329 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bruno, O., Geuzaine, C., Monro, J.J., Reitich, F.: Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case. Philos. Trans. R. Soc. Lond. A 362, 629–645 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beylkin, G., Kurcz, C., Monzón, L.: Fast algorithms for Helmholtz Green’s functions. Proc. R. Soc. Ser. A 464, 3301–3326 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chandler-Wilde, S., Graham, I., Langdon, S., Spence, E.: Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numer. 21, 89–305 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chandler-Wilde, S.N., Hewett, D.P., Langdon, S., Twigger, A.: A high frequency boundary element method for scattering by a class of nonconvex obstacles. Numer. Math. 129(4), 647–689 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng, H., Crutchfield, W.Y., Gimbutas, Z., Greengard, L.F., Ethridge, J.F., Huang, J., Rokhlin, V., Yarvin, N., Zhao, J.: A wideband fast multipole method for the helmholtz equation in three dimensions. J. Comput. Phys. 216(1), 300–325 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Colton, D.L., Kress, R.: Integral Equation Methods in Scattering Theory. Wiley, New York (1983)

    MATH  Google Scholar 

  14. Deaño, A., Huybrechs, D., Iserles, A.: Computing Highly Oscillatory Integrals, vol. 155. SIAM, Philadelphia (2018)

    MATH  Google Scholar 

  15. Domínguez, V., Graham, I.G., Smyshlyaev, V.: A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering. Numer. Math. 106, 471–510 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ecevit, F., Reitich, F.: Analysis of multiple scattering iterations for high-frequency scattering problems. I: the two-dimensional case. Numer. Math. 114, 271–354 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ganesh, M., Hawkins, S.: A fully discrete Galerkin method for high frequency exterior acoustic scattering in three dimensions. J. Comput. Phys. 230, 104–125 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ganesh, M., Langdon, S., Sloan, I.: Efficient evaluation of highly oscillatory acoustic scattering surface integrals. J. Comput. Appl. Math. 204, 363–374 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Geuzaine, C., Bruno, O., Reitich, F.: On the O(1) solution of multiple-scattering problems. IEEE Trans. Magn. 41(5), 1488–1491 (2005)

    Article  Google Scholar 

  20. Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)

    Article  MATH  Google Scholar 

  21. Giladi, E.: Asymptotically derived boundary elements for the Helmholtz equation in high frequencies. J. Comput. Appl. Math. 198, 52–74 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Groth, S., Huybrechs, D., Opsomer, P.: High-order terms in the ray expansion for high frequency scattering by single and multiple obstacles (2018) (in preparation)

  24. Groth, S.P., Hewett, D.P., Langdon, S.: Hybrid numerical-asymptotic approximation for high-frequency scattering by penetrable convex polygons. IMA J. Appl. Math. 80, 324–353 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Harrington, R.F.: Time-Harmonic Electromagnetic Fields. IEEE Press, Piscatawat (1961)

    Google Scholar 

  26. Huybrechs, D., Vandewalle, S.: A two-dimensional wavelet-packet transform for matrix compression of integral equations with highly oscillatory kernel. J. Comput. Appl. Math. 197, 218–232 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Huybrechs, D., Vandewalle, S.: A sparse discretization for integral equation formulations of high frequency scattering problems. SIAM J. Sci. Comput. 29(6), 2305–2328 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huybrechs, D., Vandewalle, S.: An efficient implementation of boundary element methods for computationally expensive Green’s functions. Eng. Anal. Bound. Elem. 32(8), 621–632 (2008)

    Article  MATH  Google Scholar 

  29. Khoromskij, B.N.: Tensor-structured preconditioners and approximate inverse of elliptic operators in \({\mathbb{R}}^d\). J. Constr. Approx. 30, 599–620 (2009)

    Article  MATH  Google Scholar 

  30. Khoromskij, B.N., Veit, A.: Efficient computation of highly oscillatory integrals by using qtt tensor approximation. Comput. Methods Appl. Math. 16(1), 145–159 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Klöckner, A., Barnett, A., Greengard, L., O’Neil, M.: Quadrature by expansion: a new method for the evaluation of layer potentials. J. Comput. Phys. 252, 332–349 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kress, R., Spassov, W.T.: On the condition number of boundary integral operators in acoustic and electromagnetic scattering. Numer. Math. 42, 77–95 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  33. Melrose, R.B., Taylor, M.E.: Near peak Scattering and the corrected Kirchhoff approximation for a convex obstacle. Adv. Math. 55, 242–315 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  34. Opsomer, P.: Release: Asymptotic compression version 3. https://github.com/popsomer/bempp.git (2016)

  35. Rokhlin, V.: Rapid solution of integral equations of classic potential theory. J. Comput. Phys. 60, 187–207 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  36. Śmigaj, W., Betcke, T., Arridge, S., Phillips, J., Schweiger, M.: Solving boundary integral problems with BEM++. ACM Trans. Math. Softw. 41(2), 6:1–6:40 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Sweldens, W., Piessens, R.: Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions. SIAM J. Numer. Anal. 31(4), 1240–1264 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wald, I., Mark, W.R., Gunther, J., Boulos, S., Thiago, I., Hunt, W., Parker, S.G., Shirley, P.: State of the Art in Ray Tracing Animated Scenes. Eurograph, Newport (2007)

    Google Scholar 

  39. Wong, R.S.: Asymptotic Approximations of Integrals. SIAM, Philadelphia (2001). (Republication of 1944)

  40. Wu, T.: Boundary Element Acoustics. WIT Press (2000). (Reprint 2005)

  41. Ying, L.: Fast directional computation of high frequency boundary integrals via local FFTs. SIAM Multiscale Model. Simul. 13(1), 423–439 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Samuel Groth, Stephen Langdon, Niels Billen, Philip Dutré, Karl Meerbergen, Laurent Jacques and Dave Hewett for interesting and helpful discussions on this paper and related topics. The authors were supported by FWO Flanders (Projects G.0617.10, G.0641.11 and G.A004.14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Opsomer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huybrechs, D., Opsomer, P. High-Frequency Asymptotic Compression of Dense BEM Matrices for General Geometries Without Ray Tracing. J Sci Comput 78, 710–745 (2019). https://doi.org/10.1007/s10915-018-0786-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0786-7

Keywords

Mathematics Subject Classification

Navigation