Skip to main content
Log in

A Posteriori Estimates Using Auxiliary Subspace Techniques

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A posteriori error estimators based on auxiliary subspace techniques for second order elliptic problems in \(\mathbb {R}^d\ (d\ge 2)\) are considered. In this approach, the solution of a global problem is utilized as the error estimator. As the continuity and coercivity of the problem trivially leads to an efficiency bound, the main focus of this paper is to derive an analogous effectivity bound and to determine the computational complexity of the auxiliary approximation problem. With a carefully chosen auxiliary subspace, we prove that the error is bounded above by the error estimate up to oscillation terms. In addition, we show that the stiffness matrix of the auxiliary problem is spectrally equivalent to its diagonal. Several numerical experiments are presented verifying the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Adjerid, S., Aiffa, M., Flaherty, J.E.: Hierarchical finite element bases for triangular and tetrahedral elements. Comput. Methods Appl. Mech. Eng. 190(22–23), 2925–2941 (2001)

    Article  MATH  Google Scholar 

  2. Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. In: Pure and Applied Mathematics. Wiley, New York (2000)

  3. Araya, R., Poza, A.H., Stephan, E.P.: A hierarchical a posteriori error estimate for an advection–diffusion–reaction problem. Math. Models Methods Appl. Sci. 15(7), 1119–1139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, D.N.: Spaces of finite element differential forms. In: Brezzi, F., Colli-Franzone, P., Gianazza, U.P., Gilardi, G. (eds.) Analysis and Numerics of Partial Differential Equations, volume 4 of Springer INdAM Series, pp. 117–140. Springer, Milan (2013)

  5. Bank, R.E.: Hierarchical bases and the finite element method. In Acta numerica, 1996, volume 5 of Acta numerica, pp. 1–43. Cambridge University Press, Cambridge (1996)

  6. Bank, R.E., Grubišić, L., Ovall, J.S.: A framework for robust eigenvalue and eigenvector error estimation and Ritz value convergence enhancement. Appl. Numer. Math. 66, 1–29 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bank, R.E., Nguyen, H.: \(hp\) adaptive finite elements based on derivative recovery and superconvergence. Comput. Vis. Sci. 14(6), 287–299 (2011)

    Article  MathSciNet  Google Scholar 

  8. Bank, R.E., Smith, R.K.: A posteriori error estimates based on hierarchical bases. SIAM J. Numer. Anal. 30(4), 921–935 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bank, R.E., Xu, J., Zheng, B.: Superconvergent derivative recovery for Lagrange triangular elements of degree \(p\) on unstructured grids. SIAM J. Numer. Anal. 45(5), 2032–2046 (2007) (electronic)

  10. Bernardi, C., Verfürth, R.: Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85(4), 579–608 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beuchler, S., Schöberl, J.: New shape functions for triangular \(p\)-FEM using integrated Jacobi polynomials. Numer. Math. 103(3), 339–366 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bornemann, F.A., Erdmann, B., Kornhuber, R.: A posteriori error estimates for elliptic problems in two and three space dimensions. SIAM J. Numer. Anal. 33(3), 1188–1204 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Braess, D., Pillwein, V., Schöberl, J.: Equilibrated residual error estimates are p-robust. Comput. Methods Appl. Mech. Eng. 198(1314):1189–1197 (2009). HOFEM07 International Workshop on High-Order Finite Element Methods (2007)

  14. Cai, Z., Wang, Y.: Pseudostress-velocity formulation for incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 63, 341–356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Carnevali, P., Morris, R.B., Tsuji, Y., Taylor, G.: New basis functions and computational procedures for p-version finite element analysis. Int. J. Numer. Methods Eng. 36(22), 3759–3779 (1993)

    Article  MATH  Google Scholar 

  16. Craig, A.W., Zhu, J.Z., Zienkiewicz, O.C.: A posteriori error estimation, adaptive mesh refinement and multigrid methods using hierarchical finite element bases. In: The Mathematics of Finite Elements and Applications. V (Uxbridge, 1984), pp. 587–594. Academic Press, London (1985)

  17. Deuflhard, P., Leinen, P., Yserentant, H.: Concepts of an adaptive hierarchical finite element code. IMPACT Comput. Sci. Eng. 1(1), 3–35 (1989)

    Article  MATH  Google Scholar 

  18. Dörfler, W., Nochetto, R.H.: Small data oscillation implies the saturation assumption. Numer. Math. 91(1), 1–12 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Eijkhout, V., Vassilevski, P.: The role of the strengthened Cauchy–Buniakowskiĭ–Schwarz inequality in multilevel methods. SIAM Rev. 33(3), 405–419 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, volume 159 of Applied Mathematical Sciences. Springer, New York (2004)

  21. Ern, A., Vohralík, M.: Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53(2), 1058–1081 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Holst, M., Ovall, J.S., Szypowski, R.: An efficient, reliable and robust error estimator for elliptic problems in \(R^3\). Appl. Numer. Math. 61(5), 675–695 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, W., Kamenski, L., Lang, J.: A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates. J. Comput. Phys. 229(6), 2179–2198 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kamenski, L.: A study on using hierarchical basis error estimates in anisotropic mesh adaptation for the finite element method. Eng. Comput. 28(4), 451–460 (2012)

    Article  Google Scholar 

  25. Kreuzer, C., Siebert, K.G.: Decay rates of adaptive finite elements with Dörfler marking. Numer. Math. 117(2), 679–716 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, H., Ovall, J.: A posteriori error estimation of hierarchical type for the Schrödinger operator with inverse square potential. Numer. Math. 128(4), 707–740 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Melenk, J.M., Wohlmuth, B.I.: On residual-based a posteriori error estimation in \(hp\)-FEM. Adv. Comput. Math. 15(1–4), 311–331 (2002). 2001. A posteriori error estimation and adaptive computational methods

  28. Ovall, J.S.: Function, gradient, and Hessian recovery using quadratic edge-bump functions. SIAM J. Numer. Anal. 45(3), 1064–1080 (2007) (electronic)

  29. Papastavrou, A., Verfürth, R.: A posteriori error estimators for stationary convection–diffusion problems: a computational comparison. Comput. Methods Appl. Mech. Eng. 189, 449–462 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Petzoldt, M.: A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16(1), 47–75 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schwab, C.: \(p\)- and \(hp\)-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York (1998). Theory and applications in solid and fluid mechanics

  32. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Skalický, T., Roos, H.-G.: Anisotropic mesh refinement for problems with internal and boundary layers. Int. J. Numer. Methods Eng. 46, 1933–1953 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Szabó, B., Babuška, I.: Finite Element Analysis. Wiley, New York (1991)

    MATH  Google Scholar 

  35. Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley, New York (1996)

    MATH  Google Scholar 

  36. Verfürth, R.: A posteriori error estimators for convection–diffusion equations. Numer. Math. 80(4), 641–663 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Verfürth, R.: Robust a posteriori error estimates for stationary convection–diffusion equations. SIAM J. Numer. Anal. 43(4), 1766–1782 (2005). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  38. Verfürth, R.: A posteriori error estimation techniques for finite element methods. In: Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013)

  39. Zienkiewicz, O.C., Kelly, D.W., Gago, J., Babuška, I.: Hierarchical finite element approaches, error estimates and adaptive refinement. In: The Mathematics of Finite Elements and Applications IV (Uxbridge, 1981), pp. 313–346. Academic Press, London (1982)

Download references

Acknowledgements

This work was supported in part by the National Science Foundation through Grants DMS-1417980 (Neilan) and DMS-1414365 (Ovall).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Ovall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakula, H., Neilan, M. & Ovall, J.S. A Posteriori Estimates Using Auxiliary Subspace Techniques. J Sci Comput 72, 97–127 (2017). https://doi.org/10.1007/s10915-016-0352-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0352-0

Keywords

Navigation