Skip to main content
Log in

A study on using hierarchical basis error estimates in anisotropic mesh adaptation for the finite element method

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A common approach for generating an anisotropic mesh is the M-uniform mesh approach where an adaptive mesh is generated as a uniform one in the metric specified by a given tensor M. A key component is the determination of an appropriate metric, which is often based on some type of Hessian recovery. Recently, the use of a global hierarchical basis error estimator was proposed for the development of an anisotropic metric tensor for the adaptive finite element solution. This study discusses the use of this method for a selection of different applications. Numerical results show that the method performs well and is comparable with existing metric tensors based on Hessian recovery. Also, it can provide even better adaptation to the solution if applied to problems with gradient jumps and steep boundary layers. For the Poisson problem in a domain with a corner singularity, the new method provides meshes that are fully comparable to the theoretically optimal meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Quadratic least squares fitting Hessian recovery [34], which seems to be the most robust and reliable Hessian recovery method [29, 32].

  2. In this paper, aspect ratio is defined as the longest edge divided by the shortest altitude. An equilateral triangle has an aspect ratio of \(2 /\sqrt{3} \approx 1.15.\)

References

  1. Agouzal A, Lipnikov K, Vassilevski Y (2008) Generation of quasi-optimal meshes based on a posteriori error estimates. In: Proceedings of the 16th international meshing roundtable, pp 139–148

  2. Agouzal A, Lipnikov K, Vassilevski Y (2009) Anisotropic mesh adaptation for solution of finite element problems using hierarchical edge-based error estimates. In: Proceedings of the 18th international meshing roundtable, pp 595–610

  3. Agouzal A, Lipnikov K, Vassilevski Y (2010) Hessian-free metric-based mesh adaptation via geometry of interpolation error. Comput Math Math Phys 50(1):124–138

    Article  MathSciNet  Google Scholar 

  4. Agouzal A, Vassilevski Y (2010) Minimization of gradient errors of piecewise linear interpolation on simplicial meshes. Comput Methods Appl Mech Eng 199(33–36):2195–2203

    Article  MathSciNet  MATH  Google Scholar 

  5. Apel T (1999) Anisotropic finite elements: local estimates and applications. B G Teubner, Stuttgart

    Google Scholar 

  6. Apel T, Grosman S, Jimack PK, Meyer A (2004) A new methodology for anisotropic mesh refinement based upon error gradients. Appl Numer Math 50(3–4):329–341

    Article  MathSciNet  MATH  Google Scholar 

  7. Bank RE, Smith RK (1993) A posteriori error estimates based on hierarchical bases. SIAM J Numer Anal 30(4):921–935

    Article  MathSciNet  MATH  Google Scholar 

  8. Bank RE, Xu J (2003) Asymptotically exact a posteriori error estimators, part I: grids with superconvergence. SIAM J Numer Anal 41(6):2294–2312

    Article  MathSciNet  MATH  Google Scholar 

  9. Bank RE, Xu J (2003) Asymptotically exact a posteriori error estimators, part II: general unstructured grids. SIAM J Numer Anal 41(6):2313–2332

    Article  MathSciNet  MATH  Google Scholar 

  10. Bildhauer M (2003) Convex variational problems. Linear, nearly linear and anisotropic growth conditions. In: Lecture notes in mathematics, vol 1818. Springer, Berlin

  11. Borouchaki H, George PL, Hecht F, Laug P, Saltel E (1997) Delaunay mesh generation governed by metric specifications. Part I. Algorithms. Finite Elem Anal Des 25(1–2):61–83

    Article  MathSciNet  MATH  Google Scholar 

  12. Borouchaki H, George PL, Mohammadi B (1997) Delaunay mesh generation governed by metric specifications. Part II. Applications. Finite Elem Anal Des 25(1–2):85–109

    Article  MathSciNet  MATH  Google Scholar 

  13. Cao W, Huang W, Russell RD (2001) Comparison of two-dimensional r-adaptive finite element methods using various error indicators. Math Comput Simul 56(2):127–143

    Article  MathSciNet  MATH  Google Scholar 

  14. Castro-Díaz MJ, Hecht F, Mohammadi B, Pironneau O (1997) Anisotropic unstructured mesh adaption for flow simulations. Int J Numer Methods Fluids 25(4):475–491

    Article  MATH  Google Scholar 

  15. Ciarlet PG, Raviart PA (1973) Maximum principle and uniform convergence for the finite element method. Comput Methods Appl Mech Eng 2(1):17–31

    Article  MathSciNet  MATH  Google Scholar 

  16. Deuflhard P, Leinen P, Yserentant H (1989) Concepts of an adaptive hierarchical finite element code. Impact Comput Sci Eng 1(1):3–35

    Article  MATH  Google Scholar 

  17. Dobrowolski M, Gräf S, Pflaum C (1999) On a posteriori error estimators in the finite element method on anisotropic meshes. Electron Trans Numer Anal 8:36–45

    MathSciNet  MATH  Google Scholar 

  18. Dolejší V (1998) Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes. Comput Vis Sci 1(3):165–178

    Article  MATH  Google Scholar 

  19. Dörfler W, Nochetto RH (2002) Small data oscillation implies the saturation assumption. Numer Math 91:1–12

    Article  MathSciNet  MATH  Google Scholar 

  20. Formaggia L, Perotto S (2001) New anisotropic a priori error estimates. Numer Math 89(4):641–667

    MathSciNet  MATH  Google Scholar 

  21. Frey PJ, George PL (2008) Mesh generation. 2nd edn. Wiley, Hoboken

    Book  MATH  Google Scholar 

  22. Hecht F (2006) BAMG: Bidimensional Anisotropic Mesh Generator. http://www.ann.jussieu.fr/~hecht/ftp/bamg/

  23. Huang W (2005) Metric tensors for anisotropic mesh generation. J Comput Phys 204(2):633–665

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang W, Kamenski L, Lang J (2010) A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates. J Comput Phys 229(6):2179–2198

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang W, Kamenski L, Li X (2009) Anisotropic mesh adaptation for variational problems using error estimation based on hierarchical bases. Can Appl Math Q 17(3):501–522. arXiv:1006.0191

    MathSciNet  MATH  Google Scholar 

  26. Huang W, Li X (2010) An anisotropic mesh adaptation method for the finite element solution of variational problems. Finite Elem Anal Des 46(1-2):61–73

    Article  MathSciNet  Google Scholar 

  27. Huang W, Sun WW (2003) Variational mesh adaptation II: error estimates and monitor functions. J Comput Phys 184(2):619–648

    Article  MathSciNet  MATH  Google Scholar 

  28. Johnson C (1987) Numerical solution of partial differential equations by the finite element method. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  29. Kamenski L (2009) Anisotropic mesh adaptation based on Hessian recovery and a posteriori error estimates. Dissertation, TU Darmstadt

  30. Li X, Huang W (2010) An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems. J Comput Phys 229(21):8072–8094

    Article  MathSciNet  MATH  Google Scholar 

  31. Ovall JS (2007) Function, gradient, and Hessian recovery using quadratic edge-bump functions. SIAM J Numer Anal 45(3):1064–1080

    Article  MathSciNet  MATH  Google Scholar 

  32. Vallet MG, Manole CM, Dompierre J, Dufour S, Guibault F (2007) Numerical comparison of some Hessian recovery techniques. Int J Numer Methods Eng 72(8):987–1007

    Article  MathSciNet  MATH  Google Scholar 

  33. Vassilevski Y, Lipnikov K (1999) An adaptive algorithm for quasioptimal mesh generation. Comput Math Math Phys 39(9):1468–1486

    MathSciNet  Google Scholar 

  34. Zhang Z, Naga A (2005) A new finite element gradient recovery method: superconvergence property. SIAM J Sci Comput 26(4):1192–1213

    Article  MathSciNet  MATH  Google Scholar 

  35. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int J Numer Methods Eng 33(7):1331–1364

    Article  MathSciNet  MATH  Google Scholar 

  36. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 2: error estimates and adaptivity. Int J Numer Methods Eng 33(7):1365–1382

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is very grateful to the anonymous referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennard Kamenski.

Additional information

This research was supported in part by the German Research Foundation through the Grant KA 3215/1-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamenski, L. A study on using hierarchical basis error estimates in anisotropic mesh adaptation for the finite element method. Engineering with Computers 28, 451–460 (2012). https://doi.org/10.1007/s00366-011-0240-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-011-0240-z

Keywords

Navigation