Skip to main content
Log in

Well-Balanced Nodal Discontinuous Galerkin Method for Euler Equations with Gravity

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a well-balanced nodal discontinuous Galerkin (DG) scheme for compressible Euler equations with gravity. The DG scheme makes use of discontinuous Lagrange basis functions supported at Gauss–Lobatto–Legendre (GLL) nodes together with GLL quadrature using the same nodes. The well-balanced property is achieved by a specific form of source term discretization that depends on the nature of the hydrostatic solution, together with the GLL nodes for quadrature of the source term. The scheme is able to preserve isothermal and polytropic stationary solutions upto machine precision on any mesh composed of quadrilateral cells and for any gravitational potential. It is applied on several examples to demonstrate its well-balanced property and the improved resolution of small perturbations around the stationary solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Atkins, H.L., Shu, C.-W.: Quadrature-free implementation of discontinuous galerkin method for hyperbolic equations. AIAA J. 36, 775–782 (1998)

    Article  Google Scholar 

  2. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33, 24/1–24/27 (2007)

    Article  MathSciNet  Google Scholar 

  3. Barth, T.J., Jespersen, D.C.: The design and application of upwind schemes on unstructured meshes AIAA PAPER 89-0366. 27th AIAA Aerospace Sciences Meeting, Reno, NV, 9–12 Jan 1989, p. 13. https://ntrs.nasa.gov/search.jsp?R=19890037939

  4. Chandrashekar, P., Klingenberg, C.: A second order well-balanced finite volume scheme for Euler equations with gravity. SIAM J. Sci. Comput. 37, B382–B402 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ern, A., Piperno, S., Djadel, K.: A well-balanced Runge–Kutta discontinuous Galerkin method for the shallow-water equations with flooding and drying. Int. J. Numer. Methods Fluids 58, 1–25 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Geuzaine, C., Remacle, J.-F.: GMSH: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  9. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Texts in Applied Mathematics. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  10. Käppeli, R., Mishra, S.: Well-balanced schemes for the Euler equations with gravitation. J. Comput. Phys. 259, 199–219 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kopriva, D.A., Gassner, G.: On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J. Sci. Comput. 44, 136–155 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Leveque, R.J.: A well-balanced path-integral f-wave method for hyperbolic problems with source terms. J. Sci. Comput. 48, 209–226 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. LeVeque, R.J., Bale, D.S.: Wave propagation methods for conservation laws with source terms. In: Jeltsch, R., Fey, M. (eds.) Hyperbolic Problems: Theory, Numerics, Applications, International Series of Numerical Mathematics, vol. 130, pp. 609–618. Birkhäuser, Basel (1999)

    Chapter  Google Scholar 

  14. Li, G., Xing, Y.: Well-balanced discontinuous Galerkin methods for Euler equations under gravitational fields. J. Sci. Comput. 67(2), 493–513 (2016). doi:10.1007/s10915-015-0093-5

  15. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  18. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994)

    Article  MATH  Google Scholar 

  19. Xing, Y.: Exactly well-balanced discontinuous Galerkin methods for the shallow water equations with moving water equilibrium. J. Comput. Phys. 257, 536–553 (2014). Part A

    Article  MathSciNet  MATH  Google Scholar 

  20. Xing, Y., Shu, C.-W.: High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. J. Comput. Phys. 214, 567–598 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xing, Y., Shu, C.-W.: High order well-balanced WENO scheme for the gas dynamics equations under gravitational fields. J. Sci. Comput. 54, 645–662 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Praveen Chandrashekar thanks the Airbus Foundation Chair for Mathematics of Complex Systems at TIFR-CAM, Bangalore, for support in carrying out this work. Markus Zenk thanks the DAAD Passage to India program which supported his visit to Bangalore during which time part of this work was conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Chandrashekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrashekar, P., Zenk, M. Well-Balanced Nodal Discontinuous Galerkin Method for Euler Equations with Gravity. J Sci Comput 71, 1062–1093 (2017). https://doi.org/10.1007/s10915-016-0339-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0339-x

Keywords

Navigation