Skip to main content
Log in

Courtship Songs of Green Lacewings Filmed in Slow Motion: How a Simple Vibrating Structure can Generate Complex Signals (Neuroptera: Chrysopidae: Chrysoperla)

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

All of the cryptic species in the Chrysoperla carnea-group of green lacewings produce substrate-borne duetting songs by vibrating the abdomen up and down. Here, we examine the motion of the abdomen during song production using a high-speed video camera. Through temporal (oscillogram) and frequency (sonogram) analysis, these motions are compared to the vibrational signals recorded from the substrate. In tests of three focal and seven non-focal species, we find that the movement of the abdomen follows a path that induces complex oscillations in lightweight substrates. Although the waveform of the signal in the substrate does not exactly mirror the waveform of abdominal motion, the frequencies of the two waveforms are nevertheless identical. In all species, the abdomen is driven by neuromuscular elements that simultaneously generate two or more signals (tones) of different frequency within the abdomen. Comparison in different species of how the abdomen moves when producing these distinct tones potentially allows us to detect homologous song elements across the carnea-group, thus clarifying some patterns of song evolution in this rapidly evolving clade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bennet-Clark HC (1998) Size and scale effects as constraints in insect sound communication. Philos Trans R Soc Lond Ser B Biol Sci 353(1367):407–419

    Article  Google Scholar 

  • Bennet-Clark HC (1999) Resonators in insect sound production: how insects produce loud pure-tone songs. J Exp Biol 202(23):3347–3357

    CAS  PubMed  Google Scholar 

  • Bennet-Clark HC, Daws AG (1999) Transduction of mechanical energy into sound energy in the cicada Cyclochila australasiae. J Exp Biol 202(13):1803–1817

    PubMed  Google Scholar 

  • Boersma P, Weenink D (2013) Praat: Doing phonetics by computer. Version 5.3.56, retrieved 15 September 2013 from http://www.praat.org. Institute of Phonetics Sciences, University of Amsterdam, Amsterdam, The Netherlands

  • Bradbury JW, Vehrencamp SL (2011) Principles of animal communication, vol 2nd. Sinauer Associates, Sunderland, 697 pp

    Google Scholar 

  • Busnel RG, Pasquinelly F, Dumortier B (1955) La tremulation du corps et la transmission aux supports des vibrations en résultant comme moyen d'information à courte portée des Ephippigères mâles et femelles. Bulletin de la Societé Zoologique de France 80:18–22

    Google Scholar 

  • Claridge MF (1985) Acoustic signals in the Homoptera: behavior, taxonomy, and evolution. Annu Rev Entomol 30:297–317

    Article  Google Scholar 

  • Cocroft RB (1999) Offspring-parent communication in a subsocial treehopper (Hemiptera: Membracidae: Umbonia crassicornis). Behaviour 136:1–21

    Article  Google Scholar 

  • Cocroft RB (2011) The public world of insect vibrational communication. Mol Ecol 20(10):2041–2043. doi:10.1111/j.1365-294X.2011.05092.x

    Article  PubMed  Google Scholar 

  • Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) (2014) Studying vibrational communication, vol 3. animal signals and communication. Springer, New York, 462 pp

    Google Scholar 

  • Cocroft RB, Rodríguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55(4):323–334

    Article  Google Scholar 

  • Cocroft RB, Shugart HJ, Konrad KT, Tibbs K (2006) Variation in plant substrates and its consequences for insect vibrational communication. Ethology 112(8):779–789

    Article  Google Scholar 

  • Cokl A, Doberlet MV (2003) Communication with substrate-borne signals in small plant-dwelling insects. Annu Rev Entomol 48:29–50

    Article  CAS  PubMed  Google Scholar 

  • Cokl A, Zorovic M, Zuni A, Virant-Doberlet M (2005) Tuning of host plants with vibratory songs of Nezara viridula L (Heteroptera: Pentatomidae). J Exp Biol 208:1481–1488

    Article  PubMed  Google Scholar 

  • Elsner N (1975) Neuroethology of sound production in gomphocerine grasshoppers. II. neuromuscular activity underlying stridulation. J Comp Physiol A 97(4):291–322

    Article  Google Scholar 

  • Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M, Mazzoni V (2011) Inter-plant vibrational communication in a leafhopper insect. PLoS ONE 6 (5). doi:10.1371/journal.pone.0019692

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. University of Chicago Press, Chicago, 531 pp

    Google Scholar 

  • Greenfield MD (1997) Acoustic communication in Orthoptera. In: Gangwere SK, Muralirangan MC, Muralirangan M (eds) Bionomics of grasshoppers. Katydids and Their Kin. C-a-B International, Wallingford, Oxon, pp 197–230

    Google Scholar 

  • Hagen KS, Tassan RL (1970) The influence of food Wheast and related Saccharomyces fragilis yeast products on the fecundity of Chrysopa carnea (Neuroptera, Chrysopidae). Can Entomol 102(7):806–811

    Article  Google Scholar 

  • Heinrich R (2013) Mechanical communication: producing sound and substrate vibrations. In: Simpson SJ, Douglas AE (eds) R. F. Chapman's the insects: structure and function, 5th edn. Cambridge University Press, Cambridge, pp 824–856

    Google Scholar 

  • Henry CS (1983) Temperature-induced changes in the calls of the green lacewing, Chrysoperla plorabunda (Neuroptera: Chrysopidae). Psyche 90(4):343–360

    Article  Google Scholar 

  • Henry CS (1997) Modern mating systems in archaic Holometabola: sexuality in neuropterid insects. In: Choe JC, Crespi BJ (eds) The evolution of mating systems in insects and arachnids. Cambridge University Press, Cambridge, pp 193–210

    Chapter  Google Scholar 

  • Henry CS (2006) Acoustic communication in neuropterid insects. In: Drosopoulos S, Claridge M (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. contemporary topics in entomology. CRC Press (Taylor and Francis Group), Boca Raton, pp 153–166

    Google Scholar 

  • Henry CS, Brooks SJ, Duelli P, Johnson JB (2002) Discovering the true Chrysoperla carnea (Stephens) (Insecta: Neuroptera: Chrysopidae) using song analysis, morphology, and ecology. Ann Entomol Soc Am 95(2):172–191

    Article  Google Scholar 

  • Henry CS, Brooks SJ, Duelli P, Johnson JB (2006) Courtship song of the South African lacewing Chrysoperla zastrowi (Esben-Petersen) (Neuroptera: Chrysopidae): evidence for a trans-equatorial geographic range? J Nat Hist 40(38–40):2173–2195

    Article  Google Scholar 

  • Henry CS, Brooks SJ, Duelli P, Johnson JB, Wells MLM, Mochizuki A (2012) Parallel evolution in courtship songs of North American and European green lacewings (Neuroptera: Chrysopidae). Biol J Linn Soc 105:776–796

    Article  Google Scholar 

  • Henry CS, Brooks SJ, Duelli P, Johnson JB, Wells MLM, Mochizuki A (2013) Obligatory duetting behavior in the Chrysoperla carnea-group of cryptic species (Neuroptera: Chrysopidae): its role in shaping evolutionary history. Biol Rev 88:787–808. doi:10.1111/brv.12027

    PubMed  Google Scholar 

  • Henry CS, Brooks SJ, Johnson JB, Mochizuki A, Duelli P (2014) A new cryptic species of the Chrysoperla carnea-group (Neuroptera: Chrysopidae) from western Asia: parallel speciation without ecological adaptation. Syst Entomol 39:380–393

    Article  Google Scholar 

  • Henry CS, Wells MM (1990) Sexual singing preceding copulation in Chrysoperla plorabunda green lacewings: observations in a semi-natural environment. Fla Entomol 73(2):331–333

    Article  Google Scholar 

  • Hill PSM (2008) Vibrational communication in animals. Harvard University Press, Cambridge, Massachusetts, 261 pp

    Google Scholar 

  • Hoch H, Deckert J, Wessel A (2006) Vibrational signalling in a Gondwanan relict insect (Hemiptera: Coleorrhyncha: Peloridiidae). Biol Lett 2(2):222–224

    Article  PubMed Central  PubMed  Google Scholar 

  • Josephson RK, Young D (1985) A synchronous insect muscle with an operating frequency greater than 500 Hz. J Exp Biol 118:185–208

    Google Scholar 

  • Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281

    Article  Google Scholar 

  • Mitomi M, Ichikawa T, Okamoto H (1984) Morphology of the vibration-producing organ in adult rice brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). Appl Entomol Zool 19(4):407–417

    Google Scholar 

  • Ossiannilsson F (1949) Insect drummers: a study on the morphology and function of the sound-production organ of Swedish Homoptera Auchenorrhyncha with notes on the sound production. Opusc Entomologia Suppl 10:1–145

    Google Scholar 

  • Otte D (1992) Evolution of cricket songs. J Orthoptera Res 1(Dec):25–49

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to imagej: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Schoneich S, Hedwig B (2012) Cellular basis for singing motor pattern generation in the field cricket (Gryllus bimaculatus DeGeer). Brain Behav 2(6):707–725. doi:10.1002/brb3.89

    Article  PubMed Central  PubMed  Google Scholar 

  • Searcy WA, Anderson M (1986) Sexual selection and the evolution of song. Annu Rev Ecol Syst 17:507–533

    Article  Google Scholar 

  • Smith G (2003) Spike2 for windows, version 5. Cambridge Electronic Design Limited, Cambridge

    Google Scholar 

  • Snodgrass RE (1935) Principles of insect morphology. McGraw Hill, Inc., New York, 667 pp

    Google Scholar 

  • Soulier-Perkins A, Sueur J, Hoch H (2007) Historical use of substrate-borne acoustic production within the Hemiptera: first record for an Australian lophopid (Hemiptera, Lophopidae). Aust J Entomol 46:129–132

    Article  Google Scholar 

  • Stewart KW, Sandberg JB, Drosopoulos S, Claridge MF (2006) Vibratory communication and mate searching behaviour in stoneflies. In: Drosopoulos S, Claridge M (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. contemporary topics in entomology. CRC Press (Taylor and Francis Group), Boca Raton, pp 179–186

    Google Scholar 

  • Tishechkin DY, Burlak NA (2013) Pure-tone vibrational signals in small Auchenorrhyncha (Homoptera). Zoologichesky Zhurnal 92(3):278–299. doi:10.7868/s0044513413030161

    Google Scholar 

  • Virant-Doberlet M, Cokl A (2004) Vibrational communication in insects. Neotrop Entomol 33(2):121–134

    Article  Google Scholar 

  • von Philipsborn AC, Liu T, Yu JY, Masser C, Bidaye SS, Dickson BJ (2011) Neuronal control of Drosophila courtship song. Neuron 69(3):509–522. doi:10.1016/j.neuron.2011.01.011

    Article  Google Scholar 

Download references

Acknowledgments

We are especially grateful to Drs. Peter Duelli (Swiss Federal Research Institute WSL, Birmensdorf, Switzerland), Atsushi Mochizuki (National Institute for Agro-Environmental Sciences, Tsukuba, Japan), and Kaushalya Amarasekare (Mid-Columbia Agricultural Research and Extension Center, Hood River, OR, U.S.A.) for collecting, maintaining, and shipping living lacewings from the Lesser Caucasus Mountains, the Alps of Switzerland, Greece, Japan, and western North America. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles S. Henry.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MOV 4580 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henry, C.S., Wells, M.L.M. Courtship Songs of Green Lacewings Filmed in Slow Motion: How a Simple Vibrating Structure can Generate Complex Signals (Neuroptera: Chrysopidae: Chrysoperla). J Insect Behav 28, 89–106 (2015). https://doi.org/10.1007/s10905-015-9484-6

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-015-9484-6

Keywords

Navigation