Skip to main content

Advertisement

Log in

Fabrication and Characterization of Magnetic Fe3O4/α-Fe2O3 Heterogeneous Nanorods

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Magnetic Fe3O4/α-Fe2O3 heterogeneous nanorods were successfully prepared via calcination reduction process using glucose as reductant, and they were characterized by SEM, TEM, XRD and VSM techniques. The influences of additive concentration, solution volume, reaction temperature and reaction time on morphology and the properties of Fe3O4/α-Fe2O3 heterogeneous nanorods were investigated. Firstly, α-Fe2O3 nanorods were prepared by the hydrothermal approach, and the FeCl3 concentration of 20 mM, the NH4H2PO4 concentration of 0.96 mM, the hydrothermal volume of 60 mL, the hydrothermal temperature of 180 °C, and hydrothermal time of 12 h were selected as the optimum conditions. Secondly, magnetic Fe3O4/α-Fe2O3 heterogeneous nanorods calcined at 600 °C for 3 h with the mass ratio of 1:20 for α-Fe2O3 nanorods and glucose were constructed with largest saturation magnetization of 78.2 emu/g, their average length and average diameter were about 215.0 nm and 79.2 nm, respectively.

Graphical Abstract

An optimization process for the fabrication of magnetic Fe3O4/α-Fe2O3 heterogeneous nanorods was introduced in this paper. Thereinto, α-Fe2O3 nanorods as a precursor were fabricated by hydrothermal method, and using glucose as a reduction agent to prepare the results products by high-temperature calcination. The influences of FeCl3 concentrations, NH4H2PO4 concentration, solution volume, hydrothermal temperature, hydrothermal time and the ratio of the precursors and glucose on the morphologies and magnetic properties of α-Fe2O3 and magnetic Fe3O4/α-Fe2O3 heterogeneous nanorods were investigated, and their influence rules were revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Krasnoperov, R. Sidorov, A. Grudnev, J. Karapetyan, D. Lazarev, On the magnetic properties of construction materials for magnetic observatories. Appl. Sci. 13(4), 2246 (2023)

    Article  CAS  Google Scholar 

  2. W.X. Liu, S. Song, M.L. Ye, Y. Zhu, Y.G. Zhao, Y. Lu, Nanomaterials with excellent adsorption characteristics for sample pretreatment: a review. Nanomaterials 12(11), 1845 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. L. Wang, Y.F. Duan, S.J. Lu, J.F. Sun, Magnetic nanomaterials mediate electromagnetic stimulations of nerves for applications in stem cell and cancer treatments. J. Funct. Biomater. 14(2), 58 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A.A. Wani, M. Shahadat, S.W. Ali, S.Z. Ahammad, M.K. Uddin, Recent advances and future perspectives of polymer-based magnetic nanomaterials for detection and removal of radionuclides: a review. J. Mol. Liq. 365, 119976 (2022)

    Article  Google Scholar 

  5. T. Rasheed, Magnetic nanomaterials: greener and sustainable alternatives for the adsorption of hazardous environmental contaminants. J. Clean Prod. 362, 132338 (2022)

    Article  CAS  Google Scholar 

  6. S. Kutluay, O. Şahin, M.S. Ece, Fabrication and characterization of Fe3O4/perlite, Fe3O4/perlite@SiO2 and Fe3O4/perlite@SiO2@sulfanilamide magnetic nanomaterials. Appl. Phys. A-Mater. 128(3), 222 (2022)

    Article  CAS  Google Scholar 

  7. R.J. Huang, X.Y. Zhou, G.Y. Chen, L.H. Su, Z.J. Liu, P.J. Zhou, J.P. Weng, Y.Z. Min, Advances of functional nanomaterials for magnetic resonance imaging and biomedical engineering applications. Wires Nanomed. Nanobi 14, e1800 (2022)

    Article  CAS  Google Scholar 

  8. D. Karthickraja, S. Karthi, G.A. Kumar, D.K. Sardar, G.C. Dannangoda, K.S. Martirosyan, N.K. Sahu, M. Prasath, R. Arunima, E.K. Girija, Fabrication and characterization of superparamagnetic nickel ferrite ferrofluid. Mater. Today: proceedings 58, 947–952 (2022)

    CAS  Google Scholar 

  9. S. Mehmet, A.M. Deliormanl, H. Atmaca, Synthesis and in vitro characterization of superparamagnetic γ-Fe2O3-containing 13–93 bioactie glasses for bone cancer therapy. Ceram. Int. 48(23), 34382–34394 (2022)

    Article  Google Scholar 

  10. E.J. Lukhele, J.T. Khutlane, N.B. Bathori, R. Malgas-Enus, Reduction and removal of methylene blue from aqueous solutions via recyclable magnetic gold nanomaterials. Surf. Interfaces. 31, 101970 (2022)

    Article  CAS  Google Scholar 

  11. H. Kothandaraman, A. Kaliyamoorthy, A. Rajaram, C.R. Kalaiselvan, N.K. Sahu, P. Govindasamy, M. Rajaram, Functionalization and haemolytic analysis of pure superparamagnetic magnetite nanoparticle for hyperthermia application. J. Biol. Phys. 48(4), 383–397 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. W.X. Liu, W.N. Zhou, S. Song, Y.G. Zhao, Y. Lu, Preparation and characterization of nano-Fe3O4 and its application for C18-functionalized magnetic nanomaterials used as chromatographic packing materials. Nanomaterials 13(6), 1111 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Azizi, Green synthesis of Fe3O4 nanoparticles and its application in preparation of Fe3O4/cellulose magnetic nanocomposite: a suitable proposal for drug delivery systems. J. Inorg. Organomet. P. 30, 3552–3561 (2020)

  14. C.M. Navarathna, N.B. Dewage, A.G. Karunanayake, E.L. Farmer, F. Perez, E.B. Hassan, T.E. Jr Mlsna, Rhodamine B adsorptive removal and photocatalytic degradation on Mil-53-Fe MOF/magnetic magnetite/biochar composites. J. Inorg. Organomet. P. 30, 214–229 (2020)

  15. A.M. Elbarbary, M. Bekhit, A.F.I. El Fadl, Synthesis and characterization of magnetically retrievable Fe3O4/Polyvinylpyrrolidone/Polystyrene Nanocomposite Catalyst for efficient Catalytic Oxidation Degradation of dyes pollutants. J. Inorg. Organomet. P. 32, 383–398 (2022)

  16. Y.L. Zhang, J. Wang, M. Liu, Y. Ni, Y. Yue, D.W. He, R.J. Liu, Magnetically induced self-assembly electrochemical biosensor with ultra-low detection limit and extended measuring range for sensitive detection of HER2 protein. Bioelectrochemistry 155(1), 108592 (2024)

    Article  CAS  PubMed  Google Scholar 

  17. Y. Ni, P. Deng, R.T. Yin, Z.Y. Zhu, C. Ling, M.Y. Ma, J. Wang, S.S. Li, R.J. Liu, The effect and mechanism of paclitaxel loaded on magnetic Fe3O4@mSiO2-NH2-FA nanocomposites to MCF-7 cells. Drug Deliv. 30(1), 64–82 (2023)

    Article  CAS  PubMed  Google Scholar 

  18. P.L. Tran-Nguyen, A.E. Angkawijaya, Q.N. Ha, N.T.C. Yen, A.W. Go, V. Bundjaja, C. Gunarto, S.P. Santoso, Y.H. Ju, Facile synthesis of superparamagnetic thiamine/Fe3O4 with enhanced adsorptivity toward divalent copper ions. Chemosphere 291, 132759 (2022)

    Article  CAS  PubMed  Google Scholar 

  19. M.B. Wei, P. Zhang, B.W. Zhang, L. Zhao, Synthesis of Fe3O4/C composites derived from cornstalk by one-step hydrothermal method as a reusable adsorbent for dyes. Inorg. Chem. Commun. 143, 109762 (2022)

    Article  CAS  Google Scholar 

  20. C.Z. Zhang, D.S. Wang, L.C. Dong, K.L. Li, Y.F. Zhang, P.A. Yang, S. Yi, X.J. Dai, C.Q. Yin, Z.L. Du, X.F. Zhang, Q. Zhou, Z.Y. Yi, J.S. Rao, Y.X. Zhang, Microwave absorption of α-Fe2O3@diatomite composites. Int. J. Mol. Sci. 23(16), 9362 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Y.X. Guan, Z.Q. Fei, T.X. Chen, G.B. Jiang, W.W. Huan, X.N. Liu, Y.X. Yang, C. Riccardo, Study on the magnetic and in Vitro Simulation Targeting properties of Co2+ and Dy3+ Doped Square γ-Fe2O3 nanoparticles. J. Inorg. Organomet. P. 30, 3396–3409 (2020)

  22. K.J. Dong, Z.K. Yang, J.W. Chen, D.J. Shi, Chen, Oxygen vacancy-Fe2O3@polyaniline composites directly grown on carbon cloth as a high stable electrode for symmetric supercapacitors. J. Inorg. Organomet. P 31, 3894–3903 (2021)

    Article  CAS  Google Scholar 

  23. T.P. Vijayakumar, M.D. Benoy, J. Duraimurugan, G. Suresh Kumar, M. Shkir, P. Maadeswaran, R. Srinivasan, S. Prabhu, R. Ramesh, S. Haseena, Investigation on photocatalytic activity of g-C3N4 decorated α-Fe2O3 nanostructure synthesized by hydrothermal method for the visible-light assisted degradation of organic pollutant. Diam. Relat. Mater. 125, 109021 (2022)

  24. R.J. Liu, Y.L. Zhang, P. Deng, W. Huang, R.T. Yin, L.L. Yu, Y. Li, S.S. Zhang, Y. Ni, C. Ling, Z.Y. Zhu, S.B. Wu, S.S. Li, Construction of targeted delivery system for curcumin loaded on magnetic α-Fe2O3/Fe3O4 heterogeneous nanotubes and its apoptosis mechanism on MCF-7 cell. Biomater. Adv. 136, 212783 (2022)

    Article  CAS  PubMed  Google Scholar 

  25. R.J. Liu, Y.L. Zhang, M. Liu, Y. Ni, Y. Yue, S.B. Wu, S.S. Li, Electrochemical sensor based on Fe3O4/α-Fe2O3@Au magnetic nanocomposites for sensitive determination of the TP53 gene. Bioelectrochemistry 152, 108429 (2023)

    Article  CAS  PubMed  Google Scholar 

  26. R.J. Liu, Z.X. Lv, X. Liu, W. Huang, S. Pan, R.T. Yin, L.L. Yu, Y. Li, Y.L. Zhang, S.S. Zhang, R.Z. Lu, Y.J. Li, S.S. Li, Improved delivery system for celastrol-loaded magnetic Fe3O4/α-Fe2O3 heterogeneous nanorods: HIF-1α-related apoptotic effects on SMMC-7721 cell. Mat. Sci. Eng. C-Mater. 125, 112103 (2021)

    Article  CAS  Google Scholar 

  27. J. Qin, M. Liu, Z. Wang, L. Pei, M.J. Zhao, Q.M. Zhou, B. Wu, R.J. Liu, A novel atmospheric pressure hydrolysis without stirring and combustion-calcination process for the fabrication of magnetic Fe3O4/α-Fe2O3 heterostructure nanorods. Mater. Res. Express. 9(7), 075005 (2022)

    Article  Google Scholar 

  28. A. Janićijević, V.P. Pavlović, D. Kovačević, M. Perić, B. Vlahović, V.B. Pavlović, S. Filipović, Structural characterization of nanocellulose/Fe3O4 hybrid nanomaterials. Polymers 14(9), 1819 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  29. H. Khurshid, R. Yoosuf, H. Zafar, S.B. Attanayake, M. Azeem, B.A. Issa, D.H. Anjum, H. Srikanth, From multi-segmented to core/shell nanorods: morphology evolution in Fe-Au nanorods by tuning fabrication conditions. Nanotechnology 34(18), 185602 (2023)

    Article  Google Scholar 

  30. M.E. Peralta, A. Koffman-Frischknecht, M.S. Moreno, D.O. Mártire, L. Carlos, Application of biobased substances in the synthesis of nanostructured magnetic core-shell materials. Inorganics 11(1), 46 (2023)

    Article  CAS  Google Scholar 

  31. Y.H. Ma, W.Y. Jiang, Y.Q. Xu, Y. Zhang, Multisegmented metallic nanorods: Sub-10 nm growth, nanoscale manipulation, and subwavelength imaging. Adv. Mater. 31(45), 1804958 (2019)

    Article  CAS  Google Scholar 

  32. A.R. Bhide, M. Suri, S. Katnoria, S. Kaur, Y.B. Jirwankar, V.D. Dighe, A.B. Jindal, Evaluation of pharmacokinetics, biodistribution, and antimalarial efficacy of artemether-loaded polymeric nanorods. Mol. Pharmaceut. 20(1), 118–127 (2023)

    Article  CAS  Google Scholar 

  33. P.C. Okoye, S.O. Azi, T.F. Qahtan, T.O. Owolabi, T.A. Saleh, Synthesis, properties, and applications of doped and undoped CuO and Cu2O nanomaterials. Mater. Today Chem. 30, 101513 (2023)

    Article  CAS  Google Scholar 

  34. D. Karajz, D. Cseh, B. Parditka, Combining ZnO inverse opal and ZnO nanorods using ALD and hydrothermal growth. J. Therm. Anal. Calorim. 147(19), 10259–10265 (2022)

    Article  CAS  Google Scholar 

  35. G.M. Kumar, V. Ganesh, D.J. Lee, H.C. Jeon, D.Y. Kim, T.W. Kang, P. Ilanchezhiyan, Fabrication of Zn1-xNixWO4 nanorods with superior photoelectrochemical and photocatalytic performances. Ceram. Int. 48(19), 29438–29444 (2022)

    Article  CAS  Google Scholar 

  36. I. Crăciunescu, G.M. Ispas, A. Ciorîța, C. Leoștean, E. Illés, R.P. Turcu, Novel magnetic composite materials for dental structure restoration application. Nanomaterials. 13(7), 1215 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  37. L.Z. Pei, T. Wei, N. Lin, H. Zhang, Synthesis of bismuth nickelate nanorods and electrochemical detection of tartaric acid using nanorods modified electrode. J. Alloy. Compd. 663, 677–685 (2016)

    Article  CAS  Google Scholar 

  38. A. Al-Rasheedi, N.H. Alonizan, A.R. Ansari, A.M. Abdel-Daiem, M.S. Aida, Influence of salt solution concentration on structural properties of ZnO nanorods grown by hydrothermal method. Appl. Phys. A-Mater. 128(9), 782 (2022)

    Article  CAS  Google Scholar 

  39. H.D. Cai, X. An, J. Cui, J.C. Li, S.H. Wen, K.G. Li, M.W. Shen, L.F. Zheng, G.X. Zhang, X.Y. Shi, Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl. Mater. Interfaces. 5(5), 1722–1731 (2013)

    Article  CAS  PubMed  Google Scholar 

  40. Y. Li, Z.X. Lv,S.S. Zhang, Y.L. Zhang, S.B. Wu, R.J. Liu, Controlled fabricationand characterization of α-FeOOH nanorods. J Inorg Organomet P. 32(4), 1400-1408 (2022)

  41. A.S. Abdelmoaty, S.T. El-Wakeel, N. Fathy, A.H. Adly, High performance of uio-66 metal-organic framework modified with melamine for uptaking of lead and cadmium from aqueous solutions. J. Inorg. Organomet. P. 32, 2557–2567 (2022)

  42. P. Feng, R.Y. Zhao, L.Y.M. Yang, S.J. Chen, D. Wang, H. Pan, C.J. Shuai, Hydrothermal synthesis of hydroxyapatite nanorods and their use in PCL bone scaffold. Ceram. Int. 48(22), 33682–33692 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by XW, and SZ. Writing-review, editing and validation were executed by XZ, JZ and LW. The study was supervised by RL. The manuscript was written by XW and XZ, all authors read and approved the final manuscript.

Corresponding author

Correspondence to Ruijiang Liu.

Ethics declarations

Conflict of interest

The author declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, X., Zhao, S. et al. Fabrication and Characterization of Magnetic Fe3O4/α-Fe2O3 Heterogeneous Nanorods. J Inorg Organomet Polym (2023). https://doi.org/10.1007/s10904-023-02956-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-023-02956-7

Keywords

Navigation