Skip to main content
Log in

Influence of salt solution concentration on structural properties of ZnO nanorods grown by hydrothermal method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, ZnO nanorods have been grown, by hydrothermal method, on glass substrate coated with sputtered ZnO thin film seed layer. The effect of the zinc precursor salt concentration is varied to investigate its effect on the grown nanorod properties. X rays diffraction (XRD), scanning electron microscopy (SEM) technique have been used to analyze the nanorods crystalline structure and morphology. UV–visible optical transmittance and photoluminescence (PL) were used to characterize the nanorods’ optical properties and electronic defects. The XRD analysis reveals the high texturation along the (002) direction indicating the well alignment of the grown nanorods confirmed by the SEM observation. Increasing the salt solution leads to ZnO nanorods with larger diameter and dense ZnO nanorods array. The nanorods optical transmission is characterized by a non-common linear decreasing with wavelength reduction. An explanation model of this behavior is addressed. The PL result analysis suggests that the synthetized ZnO nanorods are formed with Zn-termination polar face.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Mino, G. Agostini, E. Borfecchia, D. Gianolio, A. Piovano, E. Gallo, C. Lamberti, Low-dimensional systems investigated by x-ray absorption spectroscopy: a selection of 2D, 1D and 0D cases. J. Phys. D. Appl. Phys. 46, 423001 (2013). https://doi.org/10.1088/0022-3727/46/42/423001

    Article  Google Scholar 

  2. Z. Lockman, Y. Pet Fong, T. Wai Kian, K. Ibrahim, K.A. Razak, Formation of self-aligned ZnO nanorods in aqueous solution. J. Alloys Compd. 493(1), 699–706 (2010). https://doi.org/10.1016/j.jallcom.2009.12.196

    Article  Google Scholar 

  3. J.H. Yang, J.H. Zheng, H.J. Zhai, L.L. Yang, Y.J. Zhang, J.H. Lang, M. Gao, Growth mechanism and optical properties of ZnO nanotube by the hydrothermal method on Si substrates. J. Alloys Compd. 475, 741–744 (2009). https://doi.org/10.1016/J.JALLCOM.2008.07.123

    Article  Google Scholar 

  4. M.C. Newton, P.A. Warburton, ZnO tetrapod nanocrystals. Mater. Today. 10, 50–54 (2007). https://doi.org/10.1016/S1369-7021(07)70079-2

    Article  Google Scholar 

  5. R.J. Chung, Z.C. Lin, P.K. Yang, K.Y. Lai, S.F. Jen, P.W. Chiu, Hybrid ZnO NR/graphene structures as advanced optoelectronic devices with high transmittance. Nanoscale Res. Lett. 8, 1–5 (2013). https://doi.org/10.1186/1556-276X-8-350/TABLES/1

    Article  Google Scholar 

  6. L. Sang, M. Liao, M. Sumiya, A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures. Sensors. 13(8), 10482–10518 (2013). https://doi.org/10.3390/S130810482

    Article  ADS  Google Scholar 

  7. Z. Yin, Y. Shan, M. Yu, L. Yang, J. Song, P. Hu, F. Teng, Enhanced performance of UV photodetector based on ZnO nanorod arrays via TiO2 as electrons trap layer. Mater. Sci. Semicond. Process. 148, 106813 (2022)

    Article  Google Scholar 

  8. Q. Zhang, C.S. Dandeneau, X. Zhou, C. Cao, ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 21, 4087–4108 (2009). https://doi.org/10.1002/ADMA.200803827

    Article  Google Scholar 

  9. R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc oxide nanostructures for no2 gas–sensor applications: A review. Nano Micro Lett. 7, 97–120 (2015). https://doi.org/10.1007/S40820-014-0023-3/FIGURES/1

    Article  Google Scholar 

  10. A.Y. Al-Sheirey, A. Balouch, E.R. Mawarnis, L. Roza, M.Y. Abd, A.M. Rahman, Mahar., Effect of ZnO seed layer annealing temperature on the growth of ZnO nanorods and its catalytic application. Opt. Mater. 131, 112652 (2022)

    Article  Google Scholar 

  11. X. Fang, Y. Bando, U.K. Gautam, C. Ye, D. Golberg, Inorganic semiconductor nanostructures and their field-emission applications. J. Mater. Chem. 18, 509–522 (2008). https://doi.org/10.1039/B712874F

    Article  Google Scholar 

  12. A.B. Djurišić, X. Chen, Y.H. Leung, A. Man Ching Ng., ZnO nanostructures: growth, properties and applications. J. Mater. Chem. 22, 6526–6535 (2012). https://doi.org/10.1039/C2JM15548F

    Article  Google Scholar 

  13. B. Kumar, S.W. Kim, Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy 1, 342–355 (2012). https://doi.org/10.1016/J.NANOEN.2012.02.001

    Article  Google Scholar 

  14. S. Yingying, A. Nisar, H. Sun, M. Ahmad, W. Shen, M. Wei, J. Zhu, Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem. (2011). https://doi.org/10.1039/C1JM10720H

    Article  Google Scholar 

  15. M. Selvakumar, D. Krishna Bhat, A. Manish Aggarwal, S. Prahladh Iyer, G. Sravani, Nano ZnO-activated carbon composite electrodes for supercapacitors. Phys. B Condens. Matter. 405, 2286–2289 (2010). https://doi.org/10.1016/J.PHYSB.2010.02.028

    Article  ADS  Google Scholar 

  16. J.S. Chang, M.N. Chong, J.D. Ocon, Determining the structure-antibacterial properties relationship and bacterial inactivation kinetics in different morphological-controlled ZnO nanoarchitectures for wastewater applications. J. Environ. Chemi. Enginee. 9(6), 106646 (2021)

    Article  Google Scholar 

  17. J. Samuel, S. Suresh, S. Shabna, V.S. Vinita, N.J. Ananth, P.M.S. Shinu, A. MariappanTuribiussimon, Y. Samson, C.S. Biju, Characterization and antibacterial activity of Ti doped ZnO nanorods prepared by hydrazine assisted wet chemical route. Physica. E Low Dimens. Syst. Nanostructure 143, 115374 (2022)

    Article  Google Scholar 

  18. F.U. Ahmed, D. Upadhaya, D.D. Purkayastha, M.G. Krishna, Stable hydrophilic and underwater superoleophobic ZnO nanorod decorated nanofibrous membrane and its application in wastewater treatment. J. Membr Sci. 659, 120803 (2022)

    Article  Google Scholar 

  19. M. Shaban, M. Zayed, H. Hamdy, Nanostructured ZnO thin films for self-cleaning applications. RSC Adv. 7, 617–631 (2017). https://doi.org/10.1039/C6RA24788A

    Article  ADS  Google Scholar 

  20. A. George, P. Kumari, N. Soin, S.S. Roy, J.A. McLaughlin, Microstructure and field emission characteristics of ZnO nanoneedles grown by physical vapor deposition. Mater. Chem. Phys. 123, 634–638 (2010). https://doi.org/10.1016/J.MATCHEMPHYS.2010.05.029

    Article  Google Scholar 

  21. L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, J. Qi, Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives. Appl. Phys. Lett. 86, 024108 (2005). https://doi.org/10.1063/1.1851607

    Article  ADS  Google Scholar 

  22. G. Jimenez-Cadena, E. Comini, M. Ferroni, A. Vomiero, G. Sberveglieri, Synthesis of different ZnO nanostructures by modified PVD process and potential use for dye-sensitized solar cells. Mater. Chem. Phys. 124, 694–698 (2010). https://doi.org/10.1016/J.MATCHEMPHYS.2010.07.035

    Article  Google Scholar 

  23. R. Wahab, S.G. Ansari, Y.S. Kim, H.K. Seo, G.S. Kim, G. Khang, H.S. Shin, Low temperature solution synthesis and characterization of ZnO nano-flowers. Mater. Res. Bull. 42, 1640–1648 (2007). https://doi.org/10.1016/J.MATERRESBULL.2006.11.035

    Article  Google Scholar 

  24. R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. Al-Douri, XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 39, 2283–2292 (2013). https://doi.org/10.1016/J.CERAMINT.2012.08.075

    Article  Google Scholar 

  25. J. Kissi, B. Dai Courage, S.K. Dogbe, J. Banahene, O. Ernest, B. Dai, Predictive factors of physicians’ satisfaction with telemedicine services acceptance. Health Inform. J. 26(3), 1866–1880 (2020). https://doi.org/10.1177/1460458219892162

    Article  Google Scholar 

  26. P.N. Mbuyisa, O.M. Ndwandwe, C. Cepek, Controlled growth of zinc oxide nanorods synthesised by the hydrothermal method. Thin Solid Films 578, 7–10 (2015). https://doi.org/10.1016/J.TSF.2015.02.002

    Article  ADS  Google Scholar 

  27. N.R. Khalid, H. Ishtiaq, F. Ali, M.B. Tahir, S. Naeem, A. Ul-Hamid, M. Ikram, T. Iqbal, M.R. Kamal, H. Alrobei, M. Alzaid, A. Dahshan, Synergistic effects of Bi and N doped on ZnO nanorods for efficient photocatalysis. Mater. Chem. Phys. 289, 126423 (2022)

    Article  Google Scholar 

  28. Huey Jing Tan, ZulkarnainZainal, Zainal AbidinTalib, Hong, NgeeLim, Suhaidi Shafie, Sin TeeTan, Kar BanTan, Noor NazihahBahrudin, Synthesis of high quality hydrothermally grown ZnO nanorods for photoelectrochemical cell electrode. Ceram. Int. 47, 14194 (2021)

    Article  Google Scholar 

  29. H. Krajian, B. Abdallah, M. Kakhia, N. AlKafri, Hydrothermal growth method for the deposition of ZnO films: Structural, chemical and optical studies. Microelectron. Reliab. 125, 114352 (2021)

    Article  Google Scholar 

  30. M.P.F. de Godoy, L.K.S. de Herval, A.A.C. Cotta, Y.J. Onofre, W.A.A. Macedo, ZnO thin films design: the role of precursor molarity, in the spray pyrolysis process. J Mater Sci: Mater Electron 31(20), 17269–17280 (2020)

    Google Scholar 

  31. D. Poelman, P.F. Smet, Methods for the determination of the optical constants of thin films from single transmission measurements: a critical reviewJ. Phys. D: Appl. Phys. 36, 1850 (2003)

    Article  ADS  Google Scholar 

  32. G.B. Harris, X Quantitative measurement of preferred orientation in rolled uranium bars. Dublin Philos. Mag. J. Sci. 43(336), 113–123 (2009). https://doi.org/10.1080/14786440108520972

    Article  Google Scholar 

  33. S.M.A. Rastialhosseini, A. Khayatian, R. Shariatzadeh, M. Almasi Kashi, Three-dimensional ZnO nanorods growth on ZnO nanorods seed layer for high responsivity UV photodetector. Appl. Phys. A 125(12), 1–13 (2019). https://doi.org/10.1007/S00339-019-3123-6

    Article  Google Scholar 

  34. A. Lestari, S. Iwan, D. Djuhana, C. Imawan, A. Harmoko, V. Fauzia, Effect of precursor concentration on the structural and optical properties of ZnO nanorods prepared by hydrothermal method. AIP Conf. Proc. 1729, 020027 (2016). https://doi.org/10.1063/1.4946930

    Article  Google Scholar 

  35. J.J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, London & New York, 1974)

    Book  Google Scholar 

  36. W. Song, X. Yu, D.C. Markel, M.R. Hashim, W. Maryam, Influence of concentration on the geometry of ZnO nanostructures prepared by chemical bath deposition. J. Phys. Conf. Ser. 137(1), 012015 (2019). https://doi.org/10.1088/1742-6596/1371/1/012015

    Article  Google Scholar 

  37. R. Idiawati, N. Mufti, A. Taufiq, Effect of growth time on the characteristics of ZnO nanorod Iopscience. Mater. Sci. Eng (2017). https://doi.org/10.1088/1757-899X/202/1/012050

    Article  Google Scholar 

  38. N. Idiawati, A. Mufti, Effect of growth time on the characteristics of ZnO nanorods. Iopsci. Iop. Org. 202, 012050 (2017)

    Google Scholar 

  39. M.H. Majeed, M. Aycibin, A. GencerImer, A.M. Muhammad, M.M. Kareem, Influence of annealing process on structural, optical and electronic properties of nano-structured ZnO films synthesized by hydrothermal technique: Supported by DFT study. Mater. Sci. Eng. B 282, 115793 (2022)

    Article  Google Scholar 

  40. M. Shirazi, R. Sabet Dariani, M.R. Toroghinejad, Influence of doping behavior of Al on nanostructure, morphology and optoelectronic properties of Al Doped ZnO thin film grown on FTO substrate. J. Mater. Sci. Mater. Electron. 27(10), 10226–10236 (2016). https://doi.org/10.1007/S10854-016-5101-5

    Article  Google Scholar 

  41. H. Gupta, J. Singh, R.N. Dutt, S. Ojha, S. Kar, R. Kumar, V.R. Reddy, F. Singh, Defect-induced photoluminescence from gallium-doped zinc oxide thin films: influence of doping and energetic ion irradiation. Phys. Chem. Chem. Phys. 21, 15019–15029 (2019). https://doi.org/10.1039/C9CP02148E

    Article  Google Scholar 

  42. S.S. Shinde, P.S. Shinde, R.T. Sapkal, Y.W. Oh, D. Haranath, C.H. Bhosale, K.Y. Rajpure, Photoelectrocatalytic degradation of oxalic acid by spray deposited nanocrystalline zinc oxide thin films. J. Alloys Compd. 538, 237–243 (2012). https://doi.org/10.1016/J.JALLCOM.2012.05.124

    Article  Google Scholar 

  43. R. Udayabhaskar, B. Karthikeyan, Role of micro-strain and defects on band-gap, fluorescence in near white light emitting Sr doped ZnO nanorods. J. of Appl. Phys. 116, 094310 (2014). https://doi.org/10.1063/1.4893562

    Article  ADS  Google Scholar 

  44. S. Dutta, S. Chattopadhyay, A. Sarkar, M. Chakrabarti, D. Sanyal, D. Jana, Role of defects in tailoring structural, electrical and optical properties of ZnO. Prog. Mater. Sci. 54(1), 89–136 (2009)

    Article  Google Scholar 

  45. C.W.-P. in surface science, undefined 2007‏, The chemistry and physics of zinc oxide surfaces‏, Elsevier‏. (n.d.). https://www.sciencedirect.com/science/article/pii/S0079681606000955 (accessed July 4, 2022).

  46. F.O.-T.J. Torbrügge, of P., Stabilization of zinc-terminated ZnO (0001) by a modified surface stoichiometry. ACS Publ. 113(12), 4909–4914 (2009). https://doi.org/10.1021/jp804026v

    Article  Google Scholar 

  47. J.H. Lee, J.H. Shin, J.Y. Song, W. Wang, R. Schlaf, K.J. Kim, Y. Yi, Interface formation between ZnO nanorod arrays and polymers (PCBM and P3HT) for organic solar cells. J. Phys. Chem. C. 116, 26342–26348 (2012). https://doi.org/10.1021/JP3081468

    Article  Google Scholar 

  48. M.W. Allen, C.H. Swartz, T.H. Myers, T.D. Veal, C.F. McConville, S.M. Durbin, Bulk transport measurements in ZnO: The effect of surface electron layers. Phys. Rev. B Condens. 81, 075211 (2010). https://doi.org/10.1103/PHYSREVB.81.075211/FIGURES/5/MEDIUM

    Article  ADS  Google Scholar 

  49. C.H. Swartz, Transport and surface conductivity in ZnO. J. Mater. Res. 27, 2205–2213 (2012). https://doi.org/10.1557/JMR.2012.133

    Article  ADS  Google Scholar 

  50. R. Heinhold, G.T. Williams, S.P. Cooil, D.A. Evans, M.W. Allen, Influence of polarity and hydroxyl termination on the band bending at ZnO surfaces. Phys. Rev. B Condens. Matter Mater. Phys. (2013). https://doi.org/10.1103/PHYSREVB.88.235315

    Article  Google Scholar 

  51. M. Losurdo, M.M. Giangregorio, Interaction of atomic hydrogen with Zn-polar and O-polar ZnO surfaces. Appl. Phys. Lett. 86, 091901 (2005). https://doi.org/10.1063/1.1870103

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Aida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Rasheedi, A., Alonizan, N.H., Ansari, A.R. et al. Influence of salt solution concentration on structural properties of ZnO nanorods grown by hydrothermal method. Appl. Phys. A 128, 782 (2022). https://doi.org/10.1007/s00339-022-05937-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05937-8

Keywords

Navigation