
Journal of Global Optimization (2021) 81:233–260
https://doi.org/10.1007/s10898-021-01009-y

S . I . : GERAD-40

Optimal decision trees for categorical data via integer
programming

Oktay Günlük4 · Jayant Kalagnanam1 ·Minhan Li2 ·Matt Menickelly3 ·
Katya Scheinberg4

Received: 13 August 2019 / Accepted: 1 March 2021 / Published online: 24 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Decision trees have been a very popular class of predictive models for decades due to their
interpretability and good performance on categorical features. However, they are not always
robust and tend to overfit the data. Additionally, if allowed to grow large, they lose inter-
pretability. In this paper, we present a mixed integer programming formulation to construct
optimal decision trees of a prespecified size. We take the special structure of categorical fea-
tures into account and allow combinatorial decisions (based on subsets of values of features)
at each node. Our approach can also handle numerical features via thresholding. We show
that very good accuracy can be achieved with small trees using moderately-sized training
sets. The optimization problems we solve are tractable with modern solvers.

Keywords Decision trees · Integer programming · Machine learning · Binary classification

The work of Katya Scheinberg was partially supported by NSF Grant CCF-1320137. Part of this work was
performed while Katya Scheinberg was on sabbatical leave at IBM Research, Google, and University of
Oxford, partially supported by the Leverhulme Trust.

B Katya Scheinberg
katyas@cornell.edu

Oktay Günlük
ong5@cornell.edu

Jayant Kalagnanam
jayant@us.ibm.com

Minhan Li
mil417@lehigh.edu

Matt Menickelly
mmenickelly@anl.gov

1 IBM Research, Yorktown Heights, USA

2 Lehigh University, Bethlehem, USA

3 Argonne National Laboratory, Lemont, USA

4 Cornell University, Ithaca, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-021-01009-y&domain=pdf
http://orcid.org/0000-0003-3547-1841

234 Journal of Global Optimization (2021) 81:233–260

1 Introduction

Interpretability has become a well-recognized goal for machine learning models as they
push further into domains such as medicine, criminal justice, and business. In many of
these applications machine learning models complement domain experts and for human
decision-makers to trust these models, interpretability is crucial. Decision trees have been
a very popular class of predictive models for decades due to their interpretability and good
performance on categorical features. Decision trees (DTs, for short) are similar to flow-charts
as they apply a sequence of binary tests or decisions to predict the output label of the input
data. As they can be easily interpreted and applied by non-experts, DTs are considered as
one of the most widely used tools of machine learning and data analysis (see the recent
survey [11] and references therein). Another advantage of DTs is that they often naturally
result in feature selection, as only a part of the input is typically used in the decision-making
process. Furthermore, DTs can work with both numerical and categorical data directly, which
is not the case for numerical classifiers such as linear classifiers or neural networks, as these
methods require the data to be real-valued (and ordinal). For example, if a categorical feature
can take three values such as (i) red, (ii) blue, or, (iii) yellow, it is often represented by a
group of three binary features such that one of these features takes the value 1 while the
other two are 0. A numerical classifier would treat this group of three features independently
where any combination of 0/1 values are possible—ignoring the valuable information that
only three values for the triplet are possible. Numerical classifiers typically recover this lost
information by observing enough data and fitting the model accordingly. However, this is
not a trivial task, and may require a more complex model than what is really necessary. In
comparison, DTs can explicitly deal with categorical features.

There are also known disadvantages to DT predictors. For example, they are not always
robust, as they might result in poor prediction on out-of-sample data when the tree is grown
too large. Hence, small trees are often desirable to avoid overfitting and also for the sake of
interpretability. Assuming that for a given data distribution there exists a small DT that can
achieve good accuracy, the small DTs that are computed by a typical recursive DT algorithm
(such as CART [5,16]) may not achieve such accuracy, due to the heuristic nature of the
algorithm. Moreover, it is usually impossible to establish a bound on the difference between
the expected accuracy of the DT produced by a heuristic algorithm and the best possible DT.

Currently, popular algorithms used for constructing DTs (such as CART or C4.5) are
sequential heuristics that first construct a tree and then trim (prune) it to reduce its size, see
[11]. When building the tree, these heuristics use various criteria to choose a feature and a
condition on that feature to branch on. As the tree is built gradually, the resulting DT is not
necessarily “the best” for any particular global criterion. One recent example of this fact is the
winning entry [8] in the FICO interpretable machine learning competition [9]. The authors
of [8] construct a simple classifier in conjunctive normal form which in fact can also be seen
as a small depth decision tree. The authors show that their classifier is both simpler and more
accurate (on test data) than the trees constructed by CART.

In this paper, we aim to find optimal small DTs for binary classification problems that
produce interpretable and accurate classifiers for the data for which such classifiers exist.
We call a DT optimal if it has the best possible classification accuracy on a given training
dataset.We allow complex branching rules using subsets of values of categorical features. For
example, if a categorical feature represents a person’s marital status and can take the values
“single”, “married”,“divorced”, “widowed”, or “has domestic partner”, a simple branching
rule, which looks at numerical representation of the features, will make decisions based on

123

Journal of Global Optimization (2021) 81:233–260 235

a feature being “single” or not, while a more appropriate decision may be “either married or
has a domestic partner” or not. Such combinatorial branching rules are considered desirable
and in the case of binary classification using CART, branching on the best subset values of a
categorical feature can be done again according to a sequential local heuristic. On the other
hand, combinatorial branching may lead to overfitting when a categorical variable can take
a large number of values. If the categorical variable can take � values, then, there are 2� − 2
possible subsets of values of this feature that can be used for branching. To avoid overfitting,
our model allows bounding the size of the subset used for branching.

While finding an optimal DT (even without the combinatorial decisions) is known to be an
NP-hard problem [10], we show that with careful modeling, the resulting integer programs
can be solved to optimality in a reasonable amount of time using commercial solvers such
as Cplex. Moreover, since we directly optimize the empirical loss of a DT in our model,
even suboptimal feasible solutions tend to yield classifiers that outperform those learned by
other DT algorithms. In particular, we consider a binary classification problem, which means
that the output nodes (leaves) of our DTs generate binary output. Our problem formulation
takes particular advantage of this fact. Also, while our formulation can be generalized to
real-valued data, it is designed for the case when the input data is binary. Hence, we will
consider input data as being a binary vector with the property that features are grouped so
that only one feature can take the value 1 in each group for each data sample. Our formulation
explicitly takes this structure into account as we allow branching on any subset of the values
of that feature. To our knowledge such generalized rules have not been addressed by any
algorithm aiming at constructing optimal trees, such as a recent method proposed in [3],
which we will discuss in the next section.

In this paper, we focus on constructing small DTs with up to four levels of decisions,
which makes the resulting model clearly interpretable and easily usable by humans. Our
formulation, in principle, can work for binary trees of any topology; however, as we will
show in our computational results, trees of more complex topologies are much more time
consuming to train and require larger training sets to avoid overfitting. The purpose of this
paper is to show that if an accurate small (interpretable) tree exists for a given data set, it can
be obtained in a reasonable time by our proposed model, while popular heuristic methods
such as C4.5 [16] and random forests [6] tend to produce less accurate and less interpretable
trees. We note that even though we mostly focus on categorical features, our approach can
easily handle numerical features via tresholding. We discuss how to do this later and also
present numerical experiments with data sets with both categorical and numerical features.

The key approach we pursue is to formulate the DT training problem as a mixed-integer
optimization problem that is specially designed to handle categorical variables. We then
propose several modifications that are intended to aid a branch-and-bound solver, e.g. sym-
metry breaking. We also consider an extension to a formulation that directly constrains either
training sensitivity or training specificity and then maximizes the other measure.

The rest of the paper is organized as follows: First, in Sect. 2, we discuss related work in
using integer formulations for practical machine learning. Then, in Sect. 3, we describe the
main ideas of our approach and the structure of the data for which the model is developed.
In Sect. 4 we describe an initial IP model and several techniques for strengthening this
formulation. We present some computational results and comparisons in Sect. 5.

123

236 Journal of Global Optimization (2021) 81:233–260

2 Related work

The idea of solving decision trees to optimality given a fixed topology is hardly new. In [5]
from1984, the authors discuss the “one-step optimality” of inductive (greedy) tree algorithms,
and how one would ideally prefer an “overall optimal” method wherein the tree is learned in
one step (such as the one we explore in this paper). The authors remark that this is analogous
to a “best subset selection” procedure of linear regression, and continue to say that “At the
current stage of computer technology, an overall optimal tree growing procedure does not
appear feasible for any reasonably sized dataset”. In [14], the authors detail what they call
the “look-ahead pathology” of greedy tree learning algorithms, lending further evidence of
possible failures of greedy one-step methods.

In the 1990s several papers considered optimization formulations for optimal decision tree
learning, but deliberately relaxed the inherently integer nature of the problem. In particular,
in [1], a large-scale linear optimization problem, which can be viewed as a relaxation, is
solved to global optimality via a specialized tabu search method over the extreme points
of the linear polytope. In [2], a similar formulation is used, but this time combined with
the use of support-vector machine techniques such as generalized kernels for multivariate
decisions, yielding a convex nonlinear optimization problem which admits a favorable dual
structure. More recent work [15] has employed a stochastic gradient method to minimize a
continuous upper bound on misclassification error made by a deep decision tree. None of
these methods, though, guarantee optimal decision trees, since they do not consider the exact
(integer) formulations, such as the one discussed in this paper.

Recently, in [3], an integer model for optimal decision trees has been proposed. The key
difference with the model in this paper is that [3] does not target categorical variables and,
hence, does not exploit the resulting combinatorial structure.Moreover, all features are treated
as real-valued ones, hence a categorical feature is replaced by several binary features, and two
possible models are proposed. The first uses arbitrary linear combinations of features, and, in
principal, is more general than what we propose here, but results in a loss of interpretability.
The second uses the value of one feature in each branching decision, and hence is less general
than themodel in this paper. Additionally, we focus on binary classification problemswhereas
[3] presents a formulation for multi-class classification. Rather than fixing a tree topology, as
we do, they propose tuning a regularization parameter in the objective; as the parameter
magnitude increases, more leaf nodes may have no samples routed to them, effectively
yielding shallower trees. We note that this does not simplify the underlying optimization
problem, and moreover requires tuning parameters in a setting where the training of models
is computationally non-negligible, and the effect of the choice of regularization parameter
on the tree topology cannot be known a priori. In fact, in the computational results of [3],
the depth is often fixed. Finally, unlike the work in [3], we not only propose a basic model
that specifically exploits the categorical nature of the features, but we also propose several
modifications of the model that produce stronger formulations and improve the efficiency of
the branch-and-bound solver.

Wewould now like to remark on other relevant uses of integer optimization in classification
settings. In particular, [18] considered the problem of learning optimal “or’s of and’s”, which
fits into the problem of learning optimal disjunctive normal forms (DNFs), where optimality
is measured by a trade-off between the misclassification rate and the number of literals
that appear in the “or of and’s”. The work in [18] remarks on the relationship between
this problem and learning optimal decision trees. In [18], for the sake of computational
efficiency, the authors ultimately resort to optimally selecting from a subset of candidate

123

Journal of Global Optimization (2021) 81:233–260 237

suboptimal DNFs learned by heuristic means rather than solving their proposed mixed-
integer optimization problem. Similarly, [13] proposes learning DNF-like rules via integer
optimization, and propose a formulation that can be viewed as boolean compressed sensing,
lending theoretical credibility to solving a linear programming relaxation of their integer
problem. Another integer model that minimizes misclassification error by choosing general
partitions in feature space was proposed in [4], but when solving the model, global optimality
certificates were not easily obtained on moderately-sized classification datasets, and the
learned partition classifiers rarely outperformed CART, according to the overlapping author
in [3]. Finally, a column generation based mixed-integer programming approach to construct
optimal DNFs was recently proposed in [8]. This approach seems to work quite well on
several binary classification datasets including the FICO challenge data [9].

3 Setting

In this paper we consider datasets of the form {(gi1, . . . , git , yi) : i ∈ 1, 2, . . . , N } where
gij ∈ G j for some finite set G j for j = 1, . . . , t , and yi ∈ {−1,+1} is the class label asso-
ciated with a negative or positive class, respectively. For example, if the data is associated
with a manufacturing process with t steps, then each G j may correspond to a collection
of different tools that can perform the j th step of the production process and the label may
denote whether the resulting product meets certain quality standards or not. The classification
problem associated with such an example is to estimate the label of a new item based on the
particular different step-tool choices used in its manufacturing. Alternatively, the classifica-
tion problem can involve estimating whether a student will succeed in graduating from high
school based on features involving gender, race, parents marital status, zip-code and similar
information.

Any (categorical) data of this form can alternatively be represented by a binary vector
so that gij ∈ G j is replaced by a unit vector of size |G j | where the only non-zero entry in
this vector indicates the particular member of G j that the data item contains. In addition,
a real-valued (numerical) feature can be, when appropriate, made into a categorical one
by “binning”—that is breaking up the range of the feature into segments and considering
segment membership as a categorical feature. This is commonly done with features such
as income or age of an individual. For example, for advertising purposes websites typically
represent users by age groups such as “teens”, “young adults”, “middle aged”, and “seniors”
instead of actual age.

The non-leaf nodes in a decision tree are called the decision nodes where a binary test is
applied to data items. Depending on the results of these tests, the data item is routed to one
of the leaf nodes. Each leaf node is given a binary label that determines the label assigned
to the data by the DT. The binary tests we consider are of the form “does the j th feature of
the data item belong to set Ḡ j?”, where Ḡ j ⊆ G j . If the categorical data is represented by
a binary vector, then the test becomes checking if at least one of the indices from a given
collection contains a 1 or not.We do not considermore general tests thatmight check different
conditions on multiple features.

As a concrete example, consider the tree in Fig. 1 applied to binary vectors a ∈ {0, 1}6
whose elements are divided into two groups: {a1, a2, a3, a4} and {a5, a6} corresponding to
two categorical features in the original data representation. The branching decision at node
1 (the root), is based on whether one of a1 or a2 is equal to 1. If true, a given data sample is
routed to the left, otherwise (that is, if both a1 and a2 are 0), the sample is routed to the right.

123

238 Journal of Global Optimization (2021) 81:233–260

Fig. 1 A decision tree example

The branching at nodes 2 and 3 (the two children of node 1) are analogous and are shown in
the picture.We can now see that data samples s1 = (1, 0, 0, 0, 0, 1) and s2 = (0, 1, 0, 0, 0, 1)
are routed to leaf node 1, sample s3 = (0, 0, 1, 0, 1, 0) is routed to leaf node 3, and samples
s4 = (0, 0, 0, 1, 1, 0) and s5 = (0, 0, 1, 0, 1, 0) are routed to leaf node 4. The labels of the
leaf nodes are denoted by the colors white and gray in Fig. 1.

Formally, a DT is defined by (i) the topology of the tree, (i i) binary tests applied at each
decision node, and, (i i i) labels assigned to each leaf node. Throughout the paper we consider
tree topologies where a decision node either has two leaf nodes or else has two other decision
nodes as children. Note that decision trees defined this way are inherently symmetric objects,
in the sense that the same DT can be produced by different numberings of the decision and
leaf nodes as well as different labeling of the leaf nodes and the binary tests applied at the
decision nodes. For example, reversing the binary test from (a6) to (¬a6) in decision node
2, and at the same time flipping the labels of the leaf nodes 1 and 2, results in an identical
DT. More generally, it is possible to reverse the binary test at any decision node and “flip”
the subtrees rooted at that node to obtain the same tree.

The optimization problemwe consider in the next section starts with a given tree topology
and finds the best binary tests (and labels for the leaf nodes) to classify the test data at hand
with minimum error. Due to the symmetry discussed above, we can fix the labeling of the
leaf nodes at the beginning of the process and the problem reduces to finding the best binary
tests, or equivalently, choosing a categorical feature and a subset of its realizations at each
decision node. Therefore, the optimization problem consists of assigning a binary test to each
decision node so as to maximize the number of correctly classified samples in the training
set. We say that the classification of the i th sample is correct provided the path the i th sample
takes through the tree starting from the root node ends at a leaf corresponding to the correct
label. The ultimate goal of the process, however, is to obtain a DT that will classify new data
well, i.e., we are actually concerned with the generalization ability of the resulting DT.

Notice that given two tree topologies such that one is a minor of the other (i.e. it can
be obtained from the other by deleting nodes and contracting edges), the larger tree would
always be able to classify at least as many samples correctly as the smaller one on the training
data. Consequently, for optimization purposes, larger trees always perform better than any
of its minors. However, larger trees generally result in more computationally challenging

123

Journal of Global Optimization (2021) 81:233–260 239

optimization problems. In addition, smaller trees are often more desirable for classification
purposes as they are more robust and are easier to interpret.

4 Integer programming formulation

In this section, we first present the basic integer programming formulation and then describe
some enhancements to improve its computational efficiency. We initially assume that the
topology of the binary tree is given (see Fig. 2) and therefore the number of decision and leaf
nodes as well as how these nodes are connected is known. We will then describe how to pick
a good topology. The formulation below models how the partitioning of the samples is done
at the decision nodes, and which leaf node each sample is routed to as a result.

We begin by introducing the notation. Let the set of all samples be indexed by I =
{1, 2, . . . , |I |}, let I+ ⊂ I denote the indices of samples with positive labels and let I− =
I \ I+ denote the indices of the samples with negative labels. Henceforth, we assume that for
each sample the input data is transformed into a binary vector where each categorical feature
is represented by a unit vector that indicates the realization of the categorical feature. With
some abuse of terminology, wewill now refer to the entries of this binary vector as “features”,
and the collection of these 0/1 features that are associated with the same categorical feature
as “groups”. Let the set of groups be indexed by G = {1, 2, . . . , |G|} and the set of the 0/1
features be indexed by J = {1, 2, . . . , |J |}. In addition, let J (g) denote the set of features that
are contained in group g. In the example associated with Fig. 1 above, we have G = {1, 2},
J = {1, 2, 3, 4, 5, 6}, and J (1) = {1, 2, 3, 4}, J (2) = {5, 6}. For sample i , we denote the
value of its j th feature by aij .

Let the set of decision nodes be indexed by K = {1, 2, . . . , |K |} and the set of leaf
nodes be indexed by B = {1, 2, . . . , |B|}. We denote the indices of leaf nodes with positive
labels by B+ ⊂ B and the indices of leaf nodes with negative labels by B− = B \ B+. For
convenience, we let B+ contain even indices, and B− contain the odd ones.

4.1 The basic formulation

We now describe our key decision variables and the constraints on these variables. We use
binary variables vkg ∈ {0, 1} for g ∈ G and k ∈ K to denote if group g is selected for
branching at decision node k. As discussed in Sect. 3, exactly one group has to be selected
for branching at a decision node; consequently, we have the following set of constraints:

∑

g∈G
vkg = 1 ∀k ∈ K . (1)

The second set of binary variables zkj ∈ {0, 1} for j ∈ J and k ∈ K are used to denote if
feature j is one of the selected features for branching at a decision node k. Clearly, feature
j ∈ J can be selected only if the group containing it is selected at that node. Therefore,we
have the following set of constraints:

zkj ≤ vkg ∀k ∈ K , ∀g ∈ G, ∀ j ∈ J (g) (2)

in the formulation. Without loss of generality, we use the convention that if a sample has one
of the selected features at a given node, it follows the left branch at that node; otherwise it
follows the right branch.

123

240 Journal of Global Optimization (2021) 81:233–260

Fig. 2 A balanced depth-3 tree

Let

S =
{
(v, z) ∈ {0, 1}|K |×|G| × {0, 1}|K |×|J | : (v, z) satisfies inequalities (1) and (2)

}
,

and note that for any (v, z) ∈ S one can construct a corresponding decision tree in a unique
way and vice versa. In other words, for any given (v, z) ∈ S one can easily decide which leaf
node each sample is routed to. We next describe how to relate these variables (and therefore
the corresponding decision tree) to the samples.

We use binary variables cib ∈ {0, 1} for b ∈ B and i ∈ I to denote if sample i is routed to
leaf node b. This means that variable cib should take the value 1 only when sample i exactly
follows the unique path in the decision tree that leads to leaf node b. With this in mind, we
define the expression

L(i, k) =
∑

j∈J

aij z
k
j ∀k ∈ K , ∀i ∈ I , (3)

and make the following observation:

Proposition 1 Let (z, v) ∈ S. Then, for all i ∈ I and k ∈ K we have L(i, k) ∈ {0, 1} .
Furthermore, L(i, k) = 1 if and only if there exists some j ∈ J such that aij = 1 and zkj = 1.

Proof For any (z, v) ∈ S and k ∈ K , exactly one of the vkg variables, say vkg′ , takes value 1 and

vkg = 0 for all g �= g′. Therefore, zkj = 0 for all j /∈ J (g). Consequently, the first part of the

claim follows for all i ∈ I as L(i, k) = ∑
j∈J a

i
j z

k
j = ∑

j∈J (g′) a
i
j z

k
j = zkji ∈ {0, 1} where

ji ∈ J (g′) is the index of the unique feature for which aiji = 1. In addition, L(i, k) = 1 if

and only if zkji = 1 which proves the second part of the claim. 	

Consequently, the expression L(i, k) indicates if sample i ∈ I branches left at node k ∈ K .

Similarly, we define the expression

R(i, k) = 1 − L(i, k) ∀k ∈ K , ∀i ∈ I , (4)

to indicate if sample i branches right at node k.
To complete the model, we relate the expressions L(i, k) and R(i, k) to the cib variables.

Given that the topology of the tree is fixed, there is a unique path leading to each leaf node
b ∈ B from the root of the tree. This path visits a subset of the nodes K (b) ⊂ K and for
each k ∈ K (b) either the left branch or the right branch is followed. Let K L(b) ⊆ K (b)
denote the decision nodes where the left branch is followed to reach leaf node b and let

123

Journal of Global Optimization (2021) 81:233–260 241

K R(b) = K (b) \ K L(b) denote the decision nodes where the right branch is followed.
Sample i is routed to b only if it satisfies all the conditions at the nodes leading to that leaf
node. Consequently, we define the constraints

cib ≤ L(i, k) ∀b ∈ B, ∀i ∈ I , ∀k ∈ K L(b), (5)

cib ≤ R(i, k) ∀b ∈ B, ∀i ∈ I , ∀k ∈ K R(b), (6)

for all i ∈ I and b ∈ B. Combining these with the equations
∑

b∈B
cib = 1 ∀i ∈ I (7)

gives a complete formulation. Let

Q(z, v) = {
c ∈ {0, 1}N×|B| : such that (5) − (7) hold

}
.

We next formally show that combining the constraints in S and Q(z, v) gives a correct
formulation.

Proposition 2 Let (z, v) ∈ S, and let c ∈ Q(z, v). Then, cib ∈ {0, 1} for all i ∈ I and b ∈ B.
Furthermore, if cib = 1 for some i ∈ I and b ∈ B, then sample i is routed to leaf node b.

Proof Given (z, v) ∈ S and i ∈ I , assume that the correct leaf node sample i should be
routed to in the decision tree defined by (z, v) is the leaf node b′.

For all other leaf nodes b ∈ B \ {b′}, sample i either has L(i, k) = 0 for some k ∈ K L(b)
or R(i, k) = 0 for some k ∈ K R(b). Consequently, cib = 0 for all b �= b′. Equation (7) then
implies that cib′ = 1 and therefore cib ∈ {0, 1} for all b ∈ B. Conversely, if cib′ = 1 for some
b′ ∈ B, then L(i, k) = 1 for all k ∈ K L(b) and R(i, k) = 1 for all k ∈ K R(b). 	

We therefore have the following integer programming (IP) formulation:

max
∑

i∈I+

∑

b∈B+
cib + C

∑

i∈I−

∑

b∈B−
cib (8a)

s. t. (z, v) ∈ S (8b)

c ∈ Q(z, v) (8c)

where C in the objective (8a) is a constant weight chosen in case of class imbalance. For
instance, if a training set has twice as many good examples as bad examples, it may be worth
considering setting C = 2, so that every correct classification of a bad data point is equal to
two correct classifications of good data points.

Notice that formulation (8) allows solutions where all samples follow the same branch.
For example, it is possible to have a solution where a branching variable vkg = 1 for some

k ∈ K and g ∈ G, and at the same time zkj = 0 for all j ∈ J (g). In this case L(i, k) = 0
for all i ∈ I and all samples follow the right branch. It is possible to exclude such solutions
using the following pair of constraints:

(|J (g)| − 1)vkg ≥
∑

j∈J (g)

zkj ≥ vkg, (9)

for all k ∈ K and g ∈ G. These constraints enforce that if a group is selected for branching,
then at least one, but not all, of its features should be selected. We should note that in our
experiments we have not seen any benefit from using these inequalities and decided not to
include them in the formulation.

123

242 Journal of Global Optimization (2021) 81:233–260

4.2 Choosing the tree topology

The IP model (8) finds the optimal decision tree for a given tree topology which is an input
to the model. It is possible to build a more complicated IP model that can also build the tree
topology (within some restricted class) but for computational efficiency, we decided against
it. Instead, for a given dataset, we use several fixed candidate topologies and build a different
DTs for each one of them. We then pick the most promising one using cross-validation. The
four tree topologies we use are the balanced depth-3 tree shown in Fig. 2 and the additional
trees shown in Fig. 3.

Note that the first two trees presented in Fig. 3 can be obtained as a minor of the balanced
depth-3 tree shown in Fig. 2 and therefore, the optimal value of the model using the balanced
depth-3 tree will be at least as good as that of the smaller trees. Similarly, these two trees can
also be obtained as a subtree of the last tree in Fig. 3. However, due to possible overfitting,
the larger trees might perform worse than the smaller ones on new data (in testing). As
we will show via computational experiments, training smaller trees take fraction of the time
compared to training larger trees, hence training a collections of trees of increasing topologies
is comparable to training one large tree.

4.3 Computational tractability

While (8) is a correct formulation, it can be improved to enhance computational performance.
We next discuss some ideas that help reduce the size of the problem, break symmetry and
strengthen the linear programming relaxation. We first observe that the LP relaxation of (8),

Fig. 3 Possible tree topologies

123

Journal of Global Optimization (2021) 81:233–260 243

presented explicitly below, is rather weak.

max
∑

i∈I+

∑

b∈B+
cib + C

∑

i∈I−

∑

b∈B−
cib

s. t.
∑

g∈G
vkg = 1 ∀k ∈ K ,

zkj ≤ vkg ∀k ∈ K , ∀g ∈ G, ∀ j ∈ J (g),

cib ≤ L(i, k) ∀b ∈ B, ∀i ∈ I , ∀k ∈ K L(b),

cib ≤ R(i, k) ∀b ∈ B, ∀i ∈ I , ∀k ∈ K R(b),
∑

b∈B
cib = 1 ∀i ∈ I

c, v, z ≥ 0.

Note that we do not need an explicit upper bound of 1 on the variables as it is implied by
other constraints. Also note that as

∑
b∈B cib ≤ 1, for all i ∈ I , the optimal value of the LP

relaxation is at most |I+| + C |I−|. Assuming that the decision tree has at least two levels,
we will next construct a solution to the LP that attains this bound. Moreover, this solution
would also satisfy vkg ∈ {0, 1} for all k ∈ K and g ∈ G.

As the decision tree has at least two levels, both the left and right branches of the root node
contain a leaf node in B+ as well as a leaf node in B−. Let bL−, bR− ∈ B− and bL+, bR+ ∈ B+
where bL− and bL+ belong to the left branch and bR− and bR+ belong to the right branch. For an
arbitrary ḡ ∈ G, we construct the solution (z, v, c) as follows: First we set vkḡ = 1 for all

k ∈ K and zkj = 1/2 for all k ∈ K and j ∈ J (ḡ). We then set cib = 1/2 for b ∈ {bL+, bR+}
for all i ∈ I+ and set cib = 1/2 for b ∈ {bL−, bR−} for all i ∈ I−. We set all the remaining
variables to zero. Notice that

∑
b∈B− cib = 1 for i ∈ I− and

∑
b∈B+ cib = 1 for i ∈ I+ and

therefore the value of this solution is indeed |I+| + C |I−|. To see that the this solution is
feasible for the LP relaxation of (8), first note that

∑
g∈G vkg = 1 for all k ∈ K and zkj ≤ vkg

for all j ∈ J (g), g ∈ G, and k ∈ K . Also notice that L(i, k) = R(i, k) = 1/2 for all i ∈ I
and k ∈ K , which implies that (11) and (12) are also satisfied for all i ∈ I and k ∈ K .

4.3.1 Relaxing some binary variables

The computational difficulty of a MILP typically increases with the number of integer vari-
ables in the formulation and therefore it is desirable to impose integrality on as few variables
as possible. We next show that all of the v variables and most of the z variables take value
{0, 1} in an optimal solution even when they are not explicitly constrained to be integral.

Proposition 3 Every extreme point solution to (8) is integral even if (i) variables vkg are not

declared integral for all g ∈ G and decision nodes k ∈ K, and, (ii) variables zkj are not
declared integral for j ∈ J and decision nodes k ∈ K that are adjacent to a leaf node.

Proof Assume the claim does not hold and let p̄ = (v̄, z̄, c̄) be an extreme point solution
that is fractional. Let K L ⊂ K denote the decision nodes that are adjacent to leaf nodes and
consider node a /∈ K L . First note that if v̄ab is fractional, that is, if 1 > v̄ab > 0 for some
feature group b ∈ G, then 1 > v̄ag for all groups g ∈ G as

∑
g∈G v̄ag = 1. Consequently,

for this decision node we have all z̄aj = 0 as z̄aj ∈ {0, 1} for j ∈ J . This also implies that

123

244 Journal of Global Optimization (2021) 81:233–260

L(i, a) = 0 for all i ∈ I . In this case, for any g ∈ G, the point p̄ can be perturbed by setting
the vag variable to 1 and setting the remaining va∗ variables to 0 to obtain a point that satisfies
the remaining constraints. A convex combination of these perturbed points (with weights
equal to v̄ag) gives the point p̄, a contradiction. Therefore all v̄kg are integral for g ∈ G and

k ∈ K \ K L .
Therefore, if p̄ is fractional, then at least one of the following must hold: either (i) 1 >

v̄kg > 0 for some k ∈ K L and g ∈ G, or, (ii) 1 > z̄kj > 0 for some k ∈ K L and j ∈ J , or,

(iii) 1 > cib > 0 for some b ∈ B and i ∈ I . As all these variables are associated with some
decision node k ∈ K L , we conclude that there exists a decision node a ∈ K L for which
either 1 > v̄ag > 0 for some g ∈ G, or, 1 > z̄aj > 0 for some j ∈ J , or, 1 > cib > 0 for some
i ∈ I and b ∈ {b+, b−} where b+ ∈ B+ and b− ∈ B− are the two leaf nodes attached to
decision node a on the left branch and on the right branch, respectively.

Let I+
a denote the set of samples in I+ such that c̄ib+ > 0 and similarly, let I−

a denote the

set of samples in I− such that c̄ib− > 0. If c̄ib+ �= L(i, a), for some i ∈ I+
a , then point p̄

can be perturbed by increasing and decreasing c̄ib+ to obtain two new points that contain p̄

in their convex hull, a contradiction. Note that L(i, k) ∈ {0, 1} for all i ∈ I and k ∈ K \ K L

and therefore these two points indeed satisfy all the constraints. Consequently, we conclude
that c̄ib+ = L(i, a) for all i ∈ I+

a . Similarly, c̄ib− = 1 − L(i, a) for all i ∈ I−
a . Notice that

this observation also implies that, if c̄ib+ is fractional for some i ∈ I+
a or c̄ib− is fractional

for some i ∈ I−
a , then L(i, a) is also fractional, which in turn implies that for some feature

h ∈ J we must have z̄ah > 0 fractional as well.
Now assume there exists a feature h ∈ J (g) such that vag > z̄ah > 0. In this case increasing

and decreasing z̄ah by a small amount and simultaneously updating the values of c̄ib+ for i ∈ I+
a

and c̄ib− for i ∈ I−
a to satisfy c̄ib+ = L(i, a) and c̄ib− = 1 − L(i, a) after the update, leads to

two new points that contain p̄ in their convex hull. Therefore, we conclude that z̄ah is either
zero, or z̄ah = v̄ag .

So far, we have established that if c̄ib is fractional for some i ∈ I−
a ∪ I+

a and b ∈ {b+, b−},
then there is a fractional z̄aj variable for some feature j ∈ J . In addition, we observed that
if there is a fractional z̄aj for some j ∈ J then there is a fractional v̄ag for some g ∈ G.
Therefore, if p̄ is not integral, there exists a feature group d ∈ G such that 1 > v̄ad > 0.
As

∑
g∈G v̄ag = 1, this implies that there also exists a different group e ∈ G \ {d} such that

1 > v̄ae > 0.
We can now construct two new points that contain p̄ in their convex hull as follows: For

the first point we increase v̄ad and decrease v̄ae by a small amount and for the second point we
do the opposite perturbation. In addition, for both points we first update the values of z̄aj for
all j ∈ J (d)∪ J (e) and z̄aj > 0 so that z̄aj = v̄ad for all j ∈ J (d) and z̄aj = v̄ae for all j ∈ J (e).

Finally, we perturb the associated c̄ib variables for i ∈ I−
a ∪ I+

a and b ∈ {b+, b−} so that
c̄ib+ = L(i, a), for i ∈ I+

a , and c̄ib− = 1− L(i, a) for all i ∈ I−
a . Both points are feasible and

therefore we can conclude that p̄ is not an extreme point, which is a contradiction. Hence p̄
cannot be fractional. 	

We have therefore established that the v variables do not need to be declared integral and
the only z variables that need to be declared integral in the formulation (8) are the feature
selection variables zkj for all features j ∈ J and decision nodes k ∈ K that are not adjacent
to a leaf node.

123

Journal of Global Optimization (2021) 81:233–260 245

4.3.2 Deleting unnecessary variables

Notice that the objective function (8a) uses variables cib only if it corresponds to a correct
classification of the sample (i.e., i ∈ I+ and b ∈ B+, or i ∈ I− and b ∈ B−). Consequently,
the remaining cib variables can be projected out of the formulation without changing the value
of the optimal solution. We therefore only define cib variables for

{
(i, b) : i ∈ I+, b ∈ B+, or, i ∈ I−, b ∈ B−

}
(10)

andwrite constraints (5) and (6) for these variables only. In addition, This reduces the number
of c variables and the associated constraints in the formulation by a factor of one half. In this
projected formulation equation (7) becomes

∑

b∈B+
cib ≤ 1 for i ∈ I+ and

∑

b∈B−
cib ≤ 1 for i ∈ I−

4.3.3 Relaxing more binary variables

Also note that the objective function (8a) is maximizing a (weighted) sum of cib variables and
the only constraints that restrict the values of these variables are inequalities (5), (6) and (7)
which all have a right hand side of 0 or 1. Consequently, replacing the integrality constraints
cib ∈ {0, 1} with simple bound constraints 1 ≥ cib ≥ 0, still yields optimal solutions that
satisfy cib ∈ {0, 1}. Hence, we do not require cib to be integral in the formulation and therefore
significantly reduce the number of integer variables. Thus, we have a formulation for training
optimal decision trees, where the number of integer variables is independent of the number
of samples.

4.3.4 Strengthening the model

We next present valid inequalities for (8) that can be used to strengthen its LP relaxation.
Consider inequalities (5)

cib ≤ L(i, k)

for i ∈ I , b ∈ B and k ∈ K L(b) where K L(b) denotes the decision nodes where the left
branch is followed to reach the leaf node b. Also remember that

∑
b∈B cib = 1 for i ∈ I due

to Eq. (7).
Now consider a fixed i ∈ I and k ∈ K . If L(i, k) = 0, then cib = 0 for all b such that

k ∈ K L(b). On the other hand, if L(i, k) = 1 then at most one cib = 1 for b such that
k ∈ K L(b). Therefore, ∑

b∈B:K L (b)�k
cib ≤ L(i, k) (11)

is a valid inequality for all i ∈ I and k ∈ K . While this inequality is satisfied by all integral
solutions to the set Q(z, v), it is violated by some of the solutions to its continuous relaxation.
We replace the inequalities (5) in the formulation with (11) to obtain a tighter formulation.
We also replace inequalities (6) in the formulation with the following valid inequality:

∑

b∈B:K R(b)�k
cib ≤ R(i, k) (12)

123

246 Journal of Global Optimization (2021) 81:233–260

for all i ∈ I and k ∈ K . Note that, by definition, L(i, k) + R(i, k) = 1 for all i ∈ I and
k ∈ K , and consequently, adding inequalities (11) and (12) for the root node of the decision
tree implies that

∑
b∈B cib ≤ 1 for all i ∈ I .

When using inequalities (11) and (12) in the projected formulation described in Sect. 4.3.2,
we write these inequalities with the cib variables whose indices are contained in the set
described in (10). Moreover, in this case adding the inequalities associated with the root
node of the decision tree yields

∑
b∈B+ cib ≤ 1 for i ∈ I+ and

∑
b∈B− cib ≤ 1 for i ∈ I−.

Therefore, the projected version of (7) described in Sect. 4.3.2 becomes redundant.

4.3.5 Breaking symmetry: anchor features

If the variables of an integer program can be permuted without changing the structure of the
problem, the integer program is called symmetric. This poses a problem for MILP solvers
(such as Cplex) since the search space increases exponentially, see Margot (2009). The
formulation (8) falls into this category as there may be multiple alternative solutions that
represent the same decision tree. In particular, as we have discussed earlier in the paper,
we consider a decision node that is not adjacent to leaf nodes and assume that the subtrees
associated with the left and right branches of this node are symmetric (i.e. they have the
same topology). In this case, if the branching condition is reversed at this decision node (in
the sense that the values of the v variables associated with the chosen group are flipped),
and, at the same time, the subtrees associated with the left and right branches of this node
are switched, one obtains an alternative solution to the formulation corresponding to the
same decision tree. To avoid this, we designate one particular feature j(g) ∈ J (g) of each
group g ∈ G to be the anchor feature of that group and enforce that if a group is selected
for branching at such a node, samples with the anchor feature follow the left branch. More
precisely, we turn one of the inequalities in (2) to an equation and add the following to the
formulation:

zkj(g) = vkg (13)

for all g ∈ G, and all k ∈ K that is not adjacent to a leaf node and has symmetric sub-
trees hanging on the right and left branches. While Eq. (13) lead to better computational
performance, they do not exclude any decision trees from the feasible set of solutions.

4.4 Controlling overfitting due to combinatorial branching

As mentioned earlier, combinatorial branching may lead to overfitting when |J (g)| is large
for a categorical feature g ∈ G as there are 2|J (g)| possible ways to branch using this feature.
To avoid overfitting, we require the size of the subset used for branching to be either at most
max .card or at least (|J (g)|−max .card) for some input parametermax .card . To this end,
for each node k ∈ K and for each group g ∈ G that corresponds to a categorical feature
with |J (g)| > max .card , we create an additional variable xkg and include the following
constraints in the formulation,

∑

j∈J (g)

zkj ≤ max .card + (|J (g)| − max .card)(1 − xkg)

∑

j∈J (g)

zkj ≥ (|J (g)| − max .card) − (|J (g)| − max .card)xkg

xkg ∈ {0, 1}.

123

Journal of Global Optimization (2021) 81:233–260 247

We note that these new variables can also be used to break symmetry in the problem. Instead
of using anchor features, one can simply set all xkg variables to 1 for g ∈ G whenever k ∈ K is
not adjacent to a leaf node and has symmetric subtrees hanging on the right and left branches.
Similar to using anchor features, this restriction would exclude one of the solutions obtained
by reversing the branching condition at a decision node (i.e. flipping the values of the v

variables associated with the chosen group), and, switching the subtrees associated with the
left and right branches of this node.

4.5 Handling numerical features

To handle numerical features, we simply turn them into categorical features by binning them
into intervals using deciles as thresholds. Consequently, each numerical feature becomes a
categorical feature with (up to) 10 possible values, depending on the decile it belongs to.
Therefore, one can use the model described above without any further changes. However,
this might lead to decision trees that branch on, for example, whether or not a numerical
feature belongs to the second or seveth quantiles, which of course is not a very interpretable
condition. It is therefore desirable to branch on these features in a way that captures their
ordinal nature. To this end, we add additional constraints for these features to ensure that
the branching decisions correspond to “less than or equal to” or “greater than or equal to”
conditions.

More precisely, for each node k ∈ K and for each group g ∈ G that corresponds to a
numerical feature, we create an additional variablewk

g to denote if the branching condition is

of “greater than or equal to” or “less than or equal to” form.We then require the associated zkj
variables for j ∈ J (g) to take either increasing (when wk

g = 1) or decreasing values (when

wk
g = 0). The additional constraints are,

zkj ≥ zkj+1 − wk
g ∀ j, j + 1 ∈ J (g)

zkj ≥ zkj−1 − (1 − wk
g) ∀ j, j − 1 ∈ J (g)

wk
g ∈ {0, 1}.

We note that it is possible to enforce “less than or equal to” or “greater than or equal to”
form without using the additional variables w, by binarizing numerical features differently,
see [8,19]. However in this case the LP formulation becomes more dense and overall solution
times are significantly slower.

We also note that an alternative way to break symmetry in this case is to set allwk
g variables

to 1 for g ∈ G (without loss of generality) whenever k ∈ K is not adjacent to a leaf node
and has symmetric subtrees hanging on the right and left branches. For balanced trees this
property is satisfied for all non-leaf nodes. Fixing w variables this way enforces that the left
branch of a decision node will check if the greater than or equal to condition holds for the
associated numerical feature. Clearly, if this symmetry breaking rule is used, one should not
use anchor features described in Sect. 4.3.5.

4.6 Maximizing sensitivity/specificity

Inmany practical applications, especially those involving imbalanced datasets, the user’s goal
is to maximize sensitivity (the true positive rate, or TPR), while guaranteeing a certain level
of specificity (the true negative rate, or TNR), or vice versa, instead of optimizing the total

123

248 Journal of Global Optimization (2021) 81:233–260

accuracy.While such problems cannot be addressed with heuristics such as CART (except by
a trial-and-error approach to reweighting samples), our model (8) readily lends itself to such
a modified task. For example, if we intend to train a classifier with a guaranteed specificity
(on the training set) of 0.95, then we simply add the following constraint to (8)

∑

i∈I−

∑

b∈B−
cib ≥ �(1 − 0.95)|I−|� (14)

and change the objective function (8a) to

∑

i∈I+

∑

b∈B+
cib. (15)

Likewise, we can produce a model that maximizes specificity while guaranteeing a certain
level of sensitivity by switching the expressions in the constraint (14) and objective (15).

5 Computational results

We now turn to computational experiments for which we used a collection of 10 binary
(two-class) classification datasets. We obtained two of these datasets (a1a and breast-cancer-
wisconsin) from LIBSVM [7], one from FICO Explainable Machine Learning Challenge [9]
and the remaining 7 from the UCI Machine Learning repository [12]. These datasets were
selected because they fit into our framework as the majority of their variables are either
binary or categorical. Each dataset was preprocessed to have the binary form assumed by
the formulation, with identified groups of binary variables. A summary description of the
problems is given in Table 1.

Each dataset/tree topology pair results in a MILP instance, which we implemented in
Python 2.7 and then solved with Cplex version 12.6.1 on a computational cluster, giving
each instance access to 8 cores of an AMD Opteron 2.0 GHz processor. Throughout this
section, we will refer to our method as ODT (Optimal Decision Trees).

Table 1 Summary description of the datasets

Dataset # Samples % Positive # Features # Groups

a1a 1605 25% 122 14

Breast-cancer-wisconsin (bc) 695 65% 90 9

Chess-endgame (krkp) 3196 52% 73 36

Mushrooms (mush) 8124 52% 111 20

Tic-tac-toe-endgame (ttt) 958 65% 27 9

Monks-problems-1 (monks-1) 432 50% 17 6

Congressional-voting-records (votes) 435 61% 48 16

Spect-heart (heart) 267 79% 44 22

Student-alcohol-consumption (student) 395 67% 109 31

FICO explainable ML challenge (heloc) 9871 48% 253 23

123

Journal of Global Optimization (2021) 81:233–260 249

Table 2 IP Strengthening for depth-3 with 200 samples —each table entry represents # seconds/number of
LPs solved

Dataset Nothing No anchor No relax No strength All

a1a */2443792 */2422165 */5660954 2670/598733 3098/1157891

bc 2193/50075 405/118193 139/52375 188/18121 44/18660

krkp 5377 /2766623 392/95623 3726/2702709 1434/291221 320/131274

mush 31/26 22/20 12/65 22/26 23/49

ttt 1837/1914999 346/169235 71/63109 175/28588 31/10737

monks-1 32/6904 8/1596 7/2997 14/1165 5/988

Votes 293/53430 99/37350 92/29934 199/26077 96/22971

Heart 423/71498 199/42365 404/253792 898/62794 329/56847

Student */666388 */785314 */1290360 */406928 */426357

heloc */347971 */77376 */187537 */99320 */281425

5.1 Tuning the IPmodel

We begin with some computational tests to illustrate the benefit of various improvements to
the IP model that were discussed in §4.3. We only show results for five of the datasets: a1a,
bc, krkp, mush and ttt, since for the other datasets, aside from heloc, the IP is solved quickly
and the effect of improvements is less notable, while for heloc the time limit was reached in
all cases.

We note that the deletion of unnecessary variables discussed in §4.3.2 seems to be per-
formed automatically by Cplex in preprocessing, and so we do not report results relevant to
this modeling choice. However, we experiment with anchoring adding (13) (§4.3.5), relaxing
appropriate z variables and c variables (§4.3.1 and §4.3.1), and strengthening themodel using
additional constraints (11) and (12) (§4.3.4). In particular, we compare the model where none
of the above techniques are applied and using the formulation (8) (Nothing), only relaxation
and strengthening (11) and (12) are applied (No Anchor), only anchoring (13) and strength-
ening (11) and (12) are applied (No Relax), only anchoring (13) and relaxation are applied
(No Strength) and finally when all of the techniques are applied (All).

In Table 2we show the results for symmetric DTs of depths 3, while using reduced datasets
of 200 randomly subsampled data instances. In each column we list the total time in seconds
it took Cplex to close the optimality gap to below the default tolerance and the total number
of LPs solved in the process. In the case when Cplex exceeded 3h, the solve is terminated
and a ”*” is reported instead of the time.

As we see from Table 2, the data set with 200 data points make the IP difficult to solve
for some data sets, such as a1a, student and heloc but is easy to some others, such as bc
and mush. Hence in Table 3 we show results for various sizes of data, selected so that the
corresponding IP is not trivial but is still solvable within three hours.

We can conclude from Tables 2 and 3 that our proposed strategies provide significant
improvement in terms of computational time. In some cases, turning off an option may
outperform using all options; for example, turning off variable strengthening improves com-
putational time for a1a and mush compared to the All option in Table 2 and for krkp and
student in Table 3 However, the All option consistently dominates other options in the major-
ity of the cases, hence we conclude that using all proposed improvements is the best overall
strategy.

123

250 Journal of Global Optimization (2021) 81:233–260

Ta
bl
e
3

IP
St
re
ng
th
en
in
g
fo
r
de
pt
h-
3
w
ith

va
ry
in
g
sa
m
pl
es

—
ea
ch

ta
bl
e
en
tr
y
re
pr
es
en
ts
#
se
co
nd
s/
nu
m
be
r
of

L
Ps

so
lv
ed

D
at
as
et

Sa
m
pl
es

N
ot
hi
ng

N
o
an
ch
or

N
o
re
la
x.

N
o
st
re
ng
th

A
ll

a1
a

10
0

72
62

/2
55

57
37

25
41

/1
58

45
33

50
3/
42

68
53

13
52

/8
40

81
3

17
0/
10

45
04

bc
30

0
77

66
/1
01

31
35

54
45

/9
81

71
1

22
3/
64

41
1

38
6/
32

26
2

34
9/
53

19
4

kr
kp

40
0

*/
55

97
64

69
84

/8
47

23
5

75
33

/1
28

96
15

29
36

/9
72

14
36

93
/7
19

62
2

m
us
h

50
0

15
1/
37

41
/0

55
/1
10

9
18

2/
21

5
38

/7

ttt
30

0
13

94
/4
04

55
3

94
6/
22

68
64

42
4/
88

75
5

25
3/
29

86
9

35
/1
21

54

m
on

ks
-1

60
0

39
7/
32

17
6

21
/6
24

8
15

/2
63

9
44

/3
19

8
18

/2
61

6

V
ot
es

60
0

91
76

/3
47

63
2

95
9/
10

96
32

13
73

/1
81

18
7

87
7/
40

89
4

28
3/
47

52
0

H
ea
rt

60
0

12
04

/1
04

58
3

55
8/
66

05
6

23
1/
44

49
8

10
02

/3
84

86
80

6/
10

10
75

St
ud

en
t

50
18

61
/3
89

17
4

20
79

/7
33

08
0

81
4/
13

52
82

73
4/
21

10
29

17
74

/4
84

25
7

he
lo
c

50
18

7/
99

95
21

6/
21

29
3

11
0/
11

79
1

17
0/
18

18
5

25
/3
19

5

123

Journal of Global Optimization (2021) 81:233–260 251

Table 4 Solution times (in seconds) for krkp, bc and a1a

Topology Data set 100 200 300 400 500 600

depth2 krkp 2.7 6.0 11.1 14.1 17.4 22.0

depth-2.5 krkp 13.4 34.0 76.5 97.3 796.6 321.4

depth-3 krkp 238.9 1851.3 1556.7 2226.4 4320.7(*) 6238.8(*)

imbalanced krkp 568.5 4367.2(*) 5950.1(*) 6660.2(*) * *

depth2 bc 1.8 3.6 6.8 8.7 12.5 14.1

depth2.5 bc 9.7 35.4 55.2 106.3 175.4 199.6

depth3 bc 9.3 252.6 531.6 2100.5 2917.7 6753.8(*)

imbalanced bc 19.8 2238.4 2843.52(*) 4706.9 6861.5(*) *

depth2 a1a 2.9 7.1 11.5 18.3 23.0 31.1

depth2.5 a1a 72.7 470.8 754.6 935.3 961.1 3032.2

depth3 a1a 364.4 1975.6 5928.7(*) 6626.0 (*) * *

Imbalanced a1a 2163.5 6282.1(*) * * * *

Next we show the dependence of computational time on the tree topology and the size of
the data set. In Table 4 we report these results for the krkp, a1a, and bc data set each averaged
over five runs with random sample selection. Here, by depth-2.5 we refer to the topology
shown in the upper right corner of Fig. 3, and by imbalanced, we refer to the topology shown
in the bottom of Fig. 3. In these experiments we terminated each Cplex run after 3h and
when this happens on all five runs we report ”*” in the tables instead of the time. In the case
when some runs terminated in less than two hours and some did not, we averaged the times
of the finished runs and reported the time in the able, followed by ”(*)”.

As one would expect, Table 4 shows that solving the IP to optimality becomes increas-
ingly more difficult when the sample size increases and when the tree topology becomes
more complicated. However, the increase in solution time as sample size increases differs
significantly among different datasets for the same tree topology depending on the number
of features and groups of the dataset as well as how well the data can be classified using a
decision tree. Note that even though the imbalanced trees and depth-3 trees have the same
number of nodes, solving the IP for imbalanced trees is more challenging. We believe that
this is at least partly due to the fact that symmetry breaking using anchor features has to
be disabled at the root node of imbalanced trees, as the tree is not symmetric. To confirm
this we switched off symmetry breaking for depth-3 trees and the solutions time general
increased dramatically. For example for a1a the corresponding row of the table became
[3469.1(∗), 6430.8(∗), ∗, ∗, ∗, ∗] which means that some of the instances with 100 and
200 samples did not solve to optimality and for solved instances the average time for 100
samples increased from 364.4 to 3469.1 s and time for 200 samples increased from 1975.6
to 6430s. Moreover, none of the larger instances finished solving. For bc the corresponding
row of the table became [16.5, 2538.7, 4477.4(∗), 6721.6(∗), 6729.9(∗), ∗].

Restricting the number of features in the data can significantly reduce computational time.
To demonstrate this, we run the following experiments: we first repeatedly apply the CART
algorithm to each data set, using 90% of the data and default setting and thus not applying
any particular restriction of the size of the tree. We then select groups that have been used for
branching decision at least once in the CART tree. We then remove all other feature groups
from the IP formulation (by setting the corresponding v variables to 0) and apply our ODT

123

252 Journal of Global Optimization (2021) 81:233–260

Table 5 Solution times (in seconds) for krkp, bc and a1a using feature selection

Topology Data set 100 200 300 400 500 600

depth2 krkp 0.2 0.3 0.8 1.4 2.4 2.8

depth-2.5 krkp 1.0 2.0 4.7 8.0 12.3 14.8

depth-3 krkp 1.8 4.5 12.9 19.0 31.0 37.2

Imbalanced krkp 4.3 10.7 36.9 60.1 90.3 108.8

depth2 bc 0.2 0.23 0.3 0.4 0.5 0.8

depth2.5 bc 0.7 1.6 2.7 4.4 6.8 10.6

depth3 bc 0.8 2.4 4.1 6.2 9.0 12.1

Imbalanced bc 2.4 5.8 10.7 18.4 28.9 41.9

depth2 a1a 1.0 2.4 3.8 5.6 8.4 10.2

depth2.5 a1a 8.8 22.5 36.9 72.3 105.8 145.3

depth3 a1a 47.6 288.4 610.8 1636.3 1963.7 1987.2

Imbalanced a1a 167.8 767.0 2020.4 4069.7(*) 5786.1(*) 6334.0(*)

Table 6 The average training (testing) accuracy for combinatorial versus simple branching using depth-2 and
depth-3 trees

Dataset depth-2 depth-3

Simple comb-con comb-unc Simple comb-con comb-unc

a1a 82.2 (80.8) 82.9 (81.0) 83.3 (79.9) 84.0 (80.8) 84.8 (80.8) 85.7 (80.1)

mush 95.8 (95.7) 99.6 (99.4) 99.6 (99.4) 98.4 (97.7) 99.9 (99.4) 99.9 (99.3)

model to the reduced problem. On average this procedure reduced the number of original
features (groups) in a1a from 14 to 7.2, in bc from 9 to 2.4, and in krkp from 36 to 8. The
effect of this reduction on the solution time is illustrated in Table 5. We can see that in many
cases significant improvement in terms of time is achieved over results reported in Table 4.
We will discuss the effect of the feature selection on the prediction accuracy later in Sect. 5.4.

5.2 Effect of combinatorial branching

We next make a comparison to see the effect of the constraint on combinatorial branch-
ing for categorical data which is discussed in Sect. 4.4. When using this constraint with
max .card = 1 we recover “simple” branching rules where branching is performed using
only one possible value of the feature, as is done in [3]. We compare simple branching
denoted as simple, constrained branching using max .card = 2, denoted by comb-con and
unconstrained branching, denoted as comb-unc. We have also tried max .card = 3 and
max .card = 4, but max .card = 2 consistently gave better testing accuracy than the other
values. We only show the results for two data sets, a1a and mush because for the other
data sets combinatorial branching did not produce different results as most of the categorical
features had only 2 or 3 possible values. We compare decision trees of depths 2 and 3 trained
using data sets of size 600. Results averaged over five runs are shown in Table 6.

We see that for mush using combinatorial branching makes a significant improvement. In
particular, for depth-3 trees and even without max cardinality constraint, it achieves a 99.3%

123

Journal of Global Optimization (2021) 81:233–260 253

Fig. 4 Optimal depth-3 decision tree for the Mushroom dataset with %99.3 out of sample accuracy

Table 7 The average training (testing) accuracy/solution timewith orwithout constraints for numerical features

Dataset n/c depth-2 depth-2.5 depth-3 Imbalanced

a1a n 82.9 (81.0)/22 84.7 (80.5)/748 84.8 (80.8)/1800 84.7 (80.7)/1800

c 82.9 (81.0)/24 84.5 (81.0)/1191 84.7 (80.3)/1800 84.8 (80.1)/1800

bc n 96.7 (96.6)/6 97.5 (95.4)/70 97.8 (96.2)/608 97.8 (95.6)/1749

c 96.7 (96.0)/6 97.8 (94.9)/272 98.4 (94.7)/1800 98.5 (95.5)/1800

heloc n 72.0 (71.2)/7 73.3 (70.6)/119 73.8 (70.0)/515 74.1 (69.8)/1788

c 72.9 (70.4)/13.6 74.9 (68.0)/1711 75.9 (68.1)/1800 75.6 (68.6)/1800

Student n 92.1 (90.5)/1 92.6 (91.0)/8 92.6 (90.5)/25 93.1 (91.5)/127

c 92.1 (90.5)/1 92.6 (91.0)/10 92.6 (90.5)/62 93.1 (91.0)/113

out-of-sample accuracy compared to 97.7% for simple branching.We show the optimal depth-
3 tree formush dataset in Fig. 4. However, for a1a—even though unconstrained combinatorial
branching achieves good training accuracy they do not generalize as well as simple branching
rules. In particular, the a1a dataset contains one group (occupation) with many different
possible values. Branching on this group results in combinatorially many possible decisions
which leads to overfitting. Adding a constraint with max .card = 2 remedies the situation,
while still providing a small improvement over simple branching.

5.3 Effect of constraints for numerical features

Here we compare the effect of special constraints introduced for the numerical features
in Sect. 4.5. The results of this comparison are shown in Table 7. When the constraint is
imposed, the feature group is treated as numerical, and this formulation is label with ”n”, for
numerical. When the constraint is not imposed, then the group is treated as if the original
feature is categorical, and the formulation is labeled with ”c”, for categorical. We compare
both accuracy and time averaged from 5 runs with 30 mins limit.

We observe that overall adding the special constraint to impose the numerical nature of
the group improves the testing accuracy and saves computational time.

123

254 Journal of Global Optimization (2021) 81:233–260

Table 8 The average training (testing) accuracy with 30 min limit without feature selection

Dataset depth-2 depth-2.5 depth-3 Imbalanced CART-D3 # of leaves

a1a 82.9 (80.9) 84.7 (80.5) 84.7 (81.0) 85.2 (80.0) 82.0 (79.3) 3.6

bc 96.7 (96.6) 97.5 (95.6) 97.8 (94.9) 97.9 (96.4) 96.0 (94.6) 3.8

heloc 72.4 (69.8) 73.2 (70.0) 73.7 (69.6) 73.0 (68.8) 70.8 (71.0) 2

krkp 86.7 (87.0) 93.2 (93.9) 93.3 (93.9) 94.1 (94.1) 90.4 (90.3) 4

mush 99.6 (99.4) 100.0 (99.5) 100.0 (99.7) 100.0 (99.6) 99.4 (99.3) 4

ttt 71.8 (67.7) 77.0 (72.7) 79.3 (74.2) 81.9 (79.5) 75.3 (73.1) 6.6

monks-1 78.2 (74.1) 84.1 (76.8) 89.6 (82.3) 100.0 (100.0) 76.6 (76.8) 2.4

Votes 96.2 (95.5) 96.9 (93.6) 97.4 (94.1) 98.0 (95.0) 95.7 (95.9) 2.4

Heart 85.5 (88.1) 88.6 (89.6) 88.7 (89.6) 90.7 (85.2) 88.5 (91.1) 4

Student 92.8 (91.0) 93.1 (91.0) 93.3 (89.0) 93.4 (89.5) 89.5 (86.0) 4.4

5.4 Comparison with CART depth-3 trees

We next focus on comparing the accuracy of ODTs with CART. We consider 4 different
tree topologies for ODTs: depth-2, depth-2.5, depth-3 and imbalanced. We use CART as
implemented in the package rpart for R [17]. We compare the performance of ODT to CART
by restricting the maximum depth of the learned CART trees to 3, thus allowing at most 8
leaf nodes, which is the maximum that our trees can have.We note that this does not mean the
learned CARTs have the same topology as our ODTs. In fact, we found that due to various
pruning heuristics, the topologies of the trees learned by CART vary erratically and in most
cases the tree has much fewer that 8 leaves, as is shown in Table 8. On the other hand, in a
later section we show that when CART is not restricted to maximum depth-3 the resulting
trees are much larger.

We also investigate the effect of feature selection by running CART first and considering
only the features used by CART in constructing ODTs. For each dataset, we generate five
random training/testing splits of the dataset by sampling without replacement and report the
averages. We use 90% of the data for training CART and we use min{90%, 600} data points
for training ODTs.

In Tables 8 and 9 we show the results for ODTs trained for up to 30min with and without
feature selection, respectively, and compare with CART trees of depth-3. In both tables we
list the average training and testing accuracy, in percentages, over the five runs. We highlight
in bold the best testing accuracy achieved by the ODTs if it is more than 1% larger than
that achieved by CART, and reversely, highlight accuracy of CART when it is more than 1%
larger than best accuracy of ODT. The standard deviation in all cases is fairly small, typically
around 0.2 − 0.3%.

In Table 8 we see that testing accuracy achieved by ODTs after 30min of training is
significant better than that of depth-3 CART. Comparing Tables 8 and 9, we see that on
average the feature selection typically degrades training accuracy but results in better testing
accuracy. This can be explained by the fact that reducing the number of features prevents the
ODTs from overfitting. This observation suggests that using feature selection, especially for
larger trees could be beneficial not only for computational speedup but for better accuracy.

We next repeat the same experiments from Tables 8 and 9 with a 5min time limit on
Cplex and report the results in Tables 10 and 11. Note that the time for feature selection is
negligible.

123

Journal of Global Optimization (2021) 81:233–260 255

Table 9 The average training (testing) accuracy with 30 min limit with feature selection

Dataset depth-2 depth-2.5 depth-3 mbalanced CART-D3

a1a 82.9 (81.0) 84.7 (80.5) 84.8 (80.8) 84.7 (80.7) 82.0 (79.3)

bc 96.7 (96.6) 97.5 (95.4) 97.8 (96.2) 97.8 (95.6) 96.0 (94.6)

heloc 72.0 (71.2) 73.3 (70.6) 73.8 (70.0) 74.1 (69.8) 70.8 (71.0)

krkp 86.7 (87.0) 93.2 (93.9) 93.2 (93.9) 94.6 (93.8) 90.4 (90.3)

mush 99.6 (99.4) 99.9 (99.4) 99.9 (99.4) 100.0 (99.6) 99.4 (99.3)

ttt 71.8 (67.7) 77.0 (72.7) 79.3 (74.2) 81.9 (79.5) 75.3 (73.1)

monks-1 78.2 (74.1) 84.1 (76.8) 89.6 (82.3) 100.0 (100.0) 76.6 (76.8)

Votes 95.9 (95.5) 96.3 (95.0) 96.7 (95.0) 97.3 (96.8) 95.7 (95.9)

Heart 85.5 (88.1) 88.6 (90.4) 88.6 (90.4) 90.2 (88.9) 88.5 (91.1)

Student 92.1 (90.5) 92.6 (91.0) 92.6 (90.5) 93.1 (91.5) 89.5 (86.0)

Table 10 The average training (testing) accuracy with 5 min limit without feature selection

Dataset depth-2 depth-2.5 depth-3 Imbalanced CART-D3

a1a 82.9 (80.9) 84.5 (80.6) 84.4 (80.9) 83.5 (80.4) 82.0 (79.3)

bc 96.7 (96.6) 97.5 (95.6) 97.7 (96.4) 97.6 (96.2) 96.0 (94.6)

heloc 72.4 (69.8) 72.0 (69.1) 66.2 (65.0) 58.2 (57.6) 70.8 (71.0)

krkp 86.7 (87.0) 93.2 (93.9) 92.1 (92.1) 92.9 (92.9) 90.4 (90.3)

mush 99.6 (99.4) 100.0 (99.5) 100.0 (99.7) 100.0 (99.7) 99.4 (99.3)

ttt 71.8 (67.7) 77.0 (72.7) 78.7 (74.0) 77.5 (75.0) 75.3 (73.1)

monks-1 78.2 (74.1) 84.1 (76.8) 89.6 (82.3) 100.0 (100.0) 76.6 (76.8)

Votes 96.2 (95.5) 96.9 (93.6) 97.3 (94.5) 97.5 (92.7) 95.7 (95.9)

Heart 85.5 (88.1) 88.6 (89.6) 88.7 (89.6) 90.4 (88.1) 88.5 (91.1)

Student 92.8 (91.0) 93.0 (91.5) 93.0 (90.0) 87.7 (86.5) 89.5 (86.0)

Table 11 The average training (testing) accuracy with 5 min limit with feature selection

Dataset depth-2 depth-2.5 depth-3 Imbalanced CART-D3

a1a 82.9 (81.0) 84.6 (80.4) 84.4 (80.2) 84.6 (80.7) 82.0 (79.3)

bc 96.7 (96.6) 97.5 (95.4) 97.7 (95.8) 97.7 (95.2) 96.0 (94.6)

heloc 72.0 (71.2) 73.3 (70.6) 73.7 (69.7) 73.5 (70.9) 70.8 (71.0)

krkp 86.7 (87.0) 93.2 (93.9) 93.2 (93.9) 94.6 (93.8) 90.4 (90.3)

mush 99.6 (99.4) 99.9 (99.4) 99.9 (99.4) 99.9 (99.4) 99.4 (99.3)

ttt 71.8 (67.7) 77.0 (72.7) 78.7 (74.0) 77.5 (75.0) 75.3 (73.1)

monks-1 78.2 (74.1) 84.1 (76.8) 89.6 (82.3) 100.0 (100.0) 76.6 (76.8)

Votes 95.9 (95.5) 96.3 (95.0) 96.7 (95.0) 97.3 (96.8) 95.7 (95.9)

Heart 85.5 (88.1) 88.6 (90.4) 88.6 (90.4) 90.2 (88.9) 88.5 (91.1)

Student 92.1 (90.5) 92.6 (91.0) 92.6 (90.5) 93.1 (91.5) 89.5 (86.0)

123

256 Journal of Global Optimization (2021) 81:233–260

Table 12 Comparison of training (testing) accuracy across training data sizes with 30min limit and feature
selection

Dataset Topology 600 1200 1800 2400

a1a 2 82.9 (81.0) 82.4 (79.3) 82.0 (79.6) 82.0 (79.6)

krkp 2 86.7 (87.0) 86.8 (87.0) 86.8 (87.1) 86.8 (87.2)

mush 2 99.6 (99.4) 99.5 (99.4) 99.4 (99.4) 99.4 (99.4)

heloc 2 72.0 (71.2) 72.2 (70.8) 71.9 (71.2) 71.7 (71.2)

a1a 2.5 84.7 (80.5) 83.7 (80.0) 83.4 (79.6) 83.4 (79.6)

krkp 2.5 93.2 (93.9) 93.8 (93.8) 93.6 (94.0) 93.7 (94.1)

mush 2.5 99.6 (99.4) 99.8 (99.5) 99.7 (99.6) 99.7 (99.6)

heloc 2.5 73.3 (70.6) 73.1 (70.9) 72.6 (70.6) 72.3 (71.5)

a1a 3 84.7 (80.7) 83.6 (79.6) 83.3 (80.2) 83.3 (80.2)

krkp 3 94.6 (93.8) 93.8 (93.8) 93.6 (94.0) 93.7 (94.1)

mush 3 100.0 (99.6) 99.9 (99.6) 99.9 (99.7) 99.8 (99.8)

heloc 3 73.8 (70.0) 73.5 (70.9) 72.9 (71.3) 72.5 (71.4)

a1a IB 84.8 (80.8) 83.6 (79.2) 82.5 (79.6) 82.2 (79.0)

krkp IB 93.2 (93.9) 94.5 (93.7) 94.2 (93.9) 94.1 (94.1)

mush IB 99.9 (99.4) 100.0 (99.8) 100.0 (100.0) 100.0 (100.0)

heloc IB 74.1 (69.8) 73.2 (71.0) 72.1 (71.4) 72.0 (71.4)

Comparing Tables 8 and 10, we do not see a significant difference in accuracy for depth-2
and depth-2.5ODTs due to the reduction of the time limit from30 to 5min. For depth-3ODTs,
and the imbalanced trees however, both training and testing performance gets noticeably
worse due to the reduction of the time limit. Comparing Tables 10 and 11, we see that in
most cases feature selection helps in terms of both training and testing accuracy.

Overall the testing accuracy degrades between Tables 8 and 11, but not very significantly,
thus we conclude that feature selection helps for larger trees independent of the time limit.
Moreover, average testing accuracy of ODTs obtained only after 5min of computation using
feature selection seems to be similar to testing accuracy with 30min time limit (with or
without feature selection) and thus still outperforms CART. We should also note that when
the IPs are terminated earlier, the optimality gap is usually larger but it often happens that an
optimal or a near optimal integral solution is already obtained by Cplex.

5.5 Effect of training set size

To demonstrate the effect of the training set size on the resulting testing accuracy we present
the appropriate comparison in Table 12. In these experiments we run Cplex with a 30min
time.

We observe that in most cases increasing the size of the training data narrows the gap
between training and testing accuracy. This can happen for two reasons—because optimiza-
tion progress slows down and training accuracy drops and/or because there is less overfitting.
For example, for a1a it appears to be harder to find the better tree and so both the training and
the testing accuracy drops, while for mush testing accuracy gets better, as the gap between
training and testing accuracy closes. We also see, for example in the case of mush and krkp,
the effect of the increase of the data set tends to diminish as the gap between training and

123

Journal of Global Optimization (2021) 81:233–260 257

Table 13 Comparison of testing
accuracy and size of cross
validated trees versus CART

Dataset ODT Ave. # of leaves CART Ave. # of leaves

a1a 80.9 6.8 79.6 9.6

bc 96.0 4.8 94.9 4.2

heloc 71.4 4.8 71.0 3.6

krkp 93.6 6.8 96.6 9

mush 99.8 7.6 99.3 3

ttt 81.0 8.0 93.1 20.2

monks-1 100.0 8.0 82.3 8.6

Votes 95.7 7.2 95.5 2.4

Heart 89.6 7.2 88.9 5

Student 90.5 4.8 86.0 6.2

testing accuracy. This is a common behavior for machine learning models, as larger training
data tends to be more representative with respect to the entire data set. However, in our case,
we utilize the larger data set to perform prior feature selection and as a result relatively small
training sets are often sufficient for training of the ODTs. Hence, the computational burden
of solving IPs to train the ODTs is balanced by the lack of need to use large training sets.

5.6 Choosing the tree topology

In this sectionwediscuss how to chose the best tree topology via cross-validation and compare
the accuracy obtained by the chosen topology to the accuracy of trees obtained by CART
with cross-validation.

For each dataset we randomly selected 90% of the data points to use for training and
validation, leaving the remaining data for final testing. For the smaller data sets, we select
the best topology using standard 5-fold cross validation. For large data sets such as a1a, bc,
krkp, mush and ttt, we instead repeat the following experiment 5 times: we randomly select
600 data points as the training set and train a tree of each topology on this set. The remaining
data is used as a validation set and we compute the accuracy of each trained tree on this set.
After 5 experiments, we select the topology that has the best average validation accuracy.
We then retrain the tree with this topology and report the testing accuracy using the hold-out
10%. We train CART with 90% of the data points, allowing it to choose the tree depth using
its default setting and then report the testing accuracy using the hold-out set. We summarize
the results in Table 13 where for each method we list the average testing accuracy and the
average number of leaves in the tree chosen via cross-validation. We set ODT time limit to
30 mins and used feature selection from CART trained on 90% of each dataset.

We can summarize the results in Table 13 as follows: in most cases, either ODTs outper-
form CARTs in terms of accuracy or else they tend to have a significantly simpler structure
than the CART trees. In particular, for data sets a1a, student and bc that contain interpretable
human-relatable data, ODTs perform better in terms of accuracy and better or comparably
in interpretability, undoubtedly because there exist simple shallow trees that make good pre-
dictors for such data sets, and the exact optimization method such as ours can find such
trees, while a heuristic, such as CART may not. On the other hand, on the dataset ttt (which
describes various positions in a combinatorial game), simple two or three levels of decision
are simply not enough to predict the game outcome. In this case, we see that CART can

123

258 Journal of Global Optimization (2021) 81:233–260

achieve better accuracy, but at the cost of using much deeper trees. A similar situation holds
for krkp, but to a lesser extent. Finally, monks-1 data set is an artificial data set, classify-
ing robots using simple features describing parts of each robot. Classification in monks-1 is
based on simple rules that can be modeled using shallow trees and ODT performance is much
better on that data set than that of CART. In conclusion, our results clearly demonstrate that
when classification can be achieved by a small interpretable tree, ODT outperforms CART
in accuracy and interpretability.

5.7 Training depth-2 tree on full heloc data.

We performed a more detailed study of the heloc data set which was introduced in the
FICO interpretable machine learning competition [9]. The authors of the winning approach
[8] produced a model for this data set which can be represented as a depth-2 decision tree
achieving 71.7 testing accuracy. Here we show how we are able to obtain comparable results
with our approach. First we applied feature selection using CART, making sure that at least
4 features are selected. Then we trained a depth-2 tree using our ODT model and 90% of the
data points (8884 points). The optimal solution was obtained within 405s and the resulting
testing accuracy is 71.6. The corresponding CART model gives 71.0 testing accuracy.

5.8 Results of maximizing sensitivity/specificity

We now present computational results related to the maximization of sensitivity or speci-
ficity, as discussed in Sect. 4.6. We will focus on the bc dataset, which contains various
measurements of breast tumors. The positive examples in this data sets are the individuals
with malignant tumors in the breast. Clearly, it is vitally important to correctly identify all
(or almost all) positive examples, since missing a positive example may result in sending
a individual who may need cancer treatment home without recommending further tests or
treatment. On the other hand, placing a healthy individual into the malignant group, while
undesirable, is less damaging, since further tests will simply correct the error. Hence, the goal
should be maximizing specificity, while constraining sensitivity. Of course, the constraint on
the sensitivity is only guaranteed on the training set. In Table 14 we present the results of
solving suchmodel usingmin(�.9n�, 600) samples and the resulting testing sensitivity (TPR)
and specificity (TNR). We report average and variance over 30 runs.

We observe that, while depth-2 trees deliver worse specificity in training than depth-3
trees, they have better generalization and hence closely maintain the desired true positive
rate. This is also illustrated in Fig. 5.

6 Concluding remarks

We have proposed an integer programming formulation for constructing optimal binary
classification trees for data consisting of categorical features. This integer programming
formulation takes problem structure into account and, as a result, the number of integer
variables in the formulation is independent of the size of the training set. We show that the
resulting MILP can be solved to optimality in the case of small decision trees; in the case of
larger topologies, a good solution can be obtained within a set time limit. We show that our
decision trees tend to outperform those produced by CART, in accuracy and/or interpretabil-

123

Journal of Global Optimization (2021) 81:233–260 259

Table 14 TPR versus TNR,
breast cancer data, depth-2 and
depth-3 trees

depth-2 depth-3

Training Testing Training Testing

TPR TNR TPR TNR TPR TNR TPR TNR

100 79.6 99.1 76.8 100 91.6 97.2 83.6

99.5 85.4 98.9 82.4 99.5 94.6 97.4 89.7

99 89.5 97.7 89.4 99 97.2 96.8 90.0

98.5 92 98.1 90.9 98.5 97.2 97.2 90.9

98 92.7 97.7 91.0 98 98.7 96.4 94.6

97 95.8 97.5 94.7 97 99.4 96.6 96.1

96 97.3 96.4 93.9 96 99.9 94.2 94.7

95 98.4 96.2 98.0 95 100.0 93.9 93.0

Fig. 5 Breast cancer data, training versus testing sensitivity

ity. Moreover, our formulation can be extended to optimize specificity or sensitivity instead
of accuracy, which CART cannot do.

Our formulation is more specialized than that proposed recently in [3] and is hence is
easier to solve by an MILP solver. However, our model allows flexible branching rules for
categorical variables, as those allowed by CART. In addition the formulations proposed in
[3] are not particularly aimed at interpretability.

Several extensions and improvements should be considered in future work. For example,
while the number of integer variables does not depend on the size of the training set, the
number of continuous variables and the problem difficulty increases with the training set
size. Hence, we plan to consider various improvements to the solution technique which may
considerably reduce this dependence.

References

1. Bennett, K.P., Blue, J.: Optimal decision trees. Technical Report 214, Rensselaer Polytechnic Institute
Math Report (1996)

2. Bennett, K.P., Blue, J.A.: A support vector machine approach to decision trees. Neural Netw. Proc. IEEE
World Congr. Comput. Intell. 3, 2396–2401 (1998)

123

260 Journal of Global Optimization (2021) 81:233–260

3. Bertsimas, D., Dunn, J.: Optimal classification trees. Mach. Learn. 106(7), 1039–1082 (2017)
4. Bertsimas, D., Shioda, R.: Classification and regression via integer optimization. Oper. Res. 55(2), 252–

271 (2017)
5. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman

and Hall, New York (1984)
6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
7. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACMTrans. Intell. Syst. Technol.

2, 27:1–27:27 (2011)
8. Dash, S., Günlük, O., Wei, D.: Boolean Decision Rules via Column Generation. Advances in Neural

Information Processing Systems. Montreal, Canada (2018)
9. FICO Explainable Machine Learning Challenge https://community.fico.com/s/explainable-machine-

learning-challenge
10. Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is np-complete. Inform. Process. Lett.

5(1), 15–17 (1976)
11. Kotsiantis, S.B.: Decision trees: a recent overview. Artif. Intell. Rev. 39(4), 261–283 (2013)
12. Lichman, M.: UCI machine learning repository (2013)
13. Malioutov, D.M., Varshney, K.R.: Exact rule learning via boolean compressed sensing. In: Proceedings

of the 30th International Conference on Machine Learning, volume 3, pp. 765–773 (2013)
14. Murthy, S., Salzberg, S.: Lookahead and pathology in decision tree induction. In: Proceedings of the 14th

International Joint Conference on Artificial Intelligence, volume 2, pp. 1025–1031, San Francisco, CA,
USA, (1995). Morgan Kaufmann Publishers Inc

15. Norouzi, M., Collins, M., Johnson, M.A., Fleet, D.J., Kohli, P.: Efficient non-greedy optimization of
decision trees. In: Advances in Neural Information Processing Systems, pp. 1720–1728, (2015)

16. Ross, J.: Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Fran-
cisco (1993)

17. Therneau, T., Atkinson, B., Ripley, B.: rpart: Recursive partitioning and regression trees. Technical Report
(2017). R package version 4.1-11

18. Wang, T., Rudin, C.: Learning optimized or’s of and’s. Technical report, (2015). arxiv:1511.02210
19. Wang, T., Rudin, C., Doshi-Velez, F., Liu, Y., Klampfl, E., MacNeille, P.: A Bayesian framework for

learning rule sets for interpretable classification. J. Mach. Learn. Res. 18(70), 1–37 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge
http://arxiv.org/abs/1511.02210

	Optimal decision trees for categorical data via integer programming
	Abstract
	1 Introduction
	2 Related work
	3 Setting
	4 Integer programming formulation
	4.1 The basic formulation
	4.2 Choosing the tree topology
	4.3 Computational tractability
	4.3.1 Relaxing some binary variables
	4.3.2 Deleting unnecessary variables
	4.3.3 Relaxing more binary variables
	4.3.4 Strengthening the model
	4.3.5 Breaking symmetry: anchor features

	4.4 Controlling overfitting due to combinatorial branching
	4.5 Handling numerical features
	4.6 Maximizing sensitivity/specificity

	5 Computational results
	5.1 Tuning the IP model
	5.2 Effect of combinatorial branching
	5.3 Effect of constraints for numerical features
	5.4 Comparison with CART depth-3 trees
	5.5 Effect of training set size
	5.6 Choosing the tree topology
	5.7 Training depth-2 tree on full heloc data.
	5.8 Results of maximizing sensitivity/specificity

	6 Concluding remarks
	References

