Skip to main content
Log in

Tuning the Electronic and Optical Properties of Phenoxaborin Based Thermally Activated Delayed Fluorescent Materials: A DFT Study

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The electronic and optoelectronic properties of molecules constituted by benzene as linker, phenoxaborin as acceptor coupled with different types of donor moieties are investigated using the density functional theoretical method. The energy gap between the first excited singlet and triplet states (ΔEST) of the designed molecules (1–9) is found to be less than 0.5 eV suggesting them as ideal candidates for thermally activated delayed fluorescence (TADF) emitters. The analysis of frontier molecular orbitals of the molecules revealed a minimum spatial overlap between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) in favor of the small values of ΔEST. Among the molecules studied, the one in which dihydrophenazine acts as the donor has the lowest value of ΔEST. All designed molecules are good electron transporters. The non-linear optical properties of the molecules are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The coordinates of the optimized geometries are provided in the supporting information.

References

  1. Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913–915

    Article  CAS  Google Scholar 

  2. Tang CW, VanSlyke SA, Chen CH (1989) Electroluminescence of doped organic thin films. J Appl Phys 65:3610–3616

    Article  CAS  Google Scholar 

  3. Adachi C, Baldo MA, Thompson ME, Forrest SR (2001) Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J Appl Phys 90:5048–5051

    Article  CAS  Google Scholar 

  4. Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999) Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl Phys Lett 75:4–6

    Article  CAS  Google Scholar 

  5. Baldo MA, Adachi C, Forrest SR (2000) Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Phys Rev B 62:10967–10977

    Article  CAS  Google Scholar 

  6. Goushi K, Yoshida K, Sato K, Adachi C (2012) Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat Photonics 6:253–258

    Article  CAS  Google Scholar 

  7. Zhang Q, Li J, Shizu K, Huang S, Hirata S, Miyazaki H, Adachi C (2012) Design of efficient thermally activated delayed fluorescence materials for pure Blue Organic Light Emitting diodes. J Am Chem Soc 134:14706–14709

    Article  PubMed  CAS  Google Scholar 

  8. Youn Lee S, Yasuda T, Nomura H, Adachi C (2012) High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor–acceptor hybrid molecules. Appl Phys Lett 101:093306

    Article  Google Scholar 

  9. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492:234–238

    Article  PubMed  CAS  Google Scholar 

  10. Klessinger M (1995) Conical intersections and the mechanism of Singlet Photoreactions. Angew Chem Int Ed Engl 34:549–551

    Article  CAS  Google Scholar 

  11. Méhes G, Nomura H, Zhang Q, Nakagawa T, Adachi C (2012) Enhanced Electroluminescence Efficiency in a Spiro-Acridine Derivative through Thermally activated delayed fluorescence. Angew Chem Int Ed 51:11311–11315

    Article  Google Scholar 

  12. Fan J, Lin L, Wang C-K (2017) Excited state properties of non-doped thermally activated delayed fluorescence emitters with aggregation-induced emission: a QM/MM study. J Mater Chem C 5:8390–8399

    Article  CAS  Google Scholar 

  13. Lee J, Shizu K, Tanaka H, Nomura H, Yasuda T, Adachi C (2013) Oxadiazole- and triazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes. J Mater Chem C 1:4599–4604

    Article  CAS  Google Scholar 

  14. Paras CN, Ramachandran (2023) Tuning of the singlet–Triplet Energy gap of Donor-Linker-Acceptor based thermally activated delayed fluorescent emitters. J Fluoresc.

  15. Paras A, Dhiman CN, Ramachandran (2022) Effect of aromatic linkers on thermally activated delayed fluorescence of selected organic molecules. Chem Phys Lett 139711

  16. Vikramaditya T, Saisudhakar M, Sumithra K (2016) Computational study on thermally activated delayed fluorescence of donor–linker–acceptor network molecules. RSC Adv 6:37203–37211

    Article  CAS  Google Scholar 

  17. Rajamalli P, Chen D, Suresh SM, Tsuchiya Y, Adachi C, Zysman-Colman E (2021) Planar and Rigid Pyrazine-Based TADF Emitter for Deep Blue Bright Organic Light-Emitting Diodes. Eur J Org Chem 2021:2285–2293

    Article  CAS  Google Scholar 

  18. Lee GH, Kim YS, Pyridine (2018) Pyrimidine-, and triazine-based thermally activated delayed fluorescence emitters. J Nanosci Nanotechnol 18:7211–7215

    Article  PubMed  CAS  Google Scholar 

  19. Huang Y, Zhang D-H, Tao X-D, Wei Z, Jiang S, Meng L, Yang M-X, Chen X-L, Lu C-Z (2022) Triptycene-derived thermally activated delayed fluorescence emitters with combined through-bond and through-space charge transfers. Dyes Pigm 204:110397

    Article  CAS  Google Scholar 

  20. Varathan E, Patnaik A (2019) Oxidation state-dependent Electronic properties of Sulfur-Containing thermally activated delayed fluorescence molecules. J Phys Chem A 123:8755–8765

    Article  PubMed  CAS  Google Scholar 

  21. Li X, Chen Y, Li S, Li A, Tu L, Zhang D, Duan L, Xie Y, Tang BZ, Li Z (2023) Quinoxaline-based thermally activated delayed fluorescence emitters for highly efficient organic light-emitting diodes. J Mater Chem C 11:5217–5224

    Article  CAS  Google Scholar 

  22. Takahashi T, Shizu K, Yasuda T, Togashi K, Adachi C (2014) Donor–acceptor-structured 1,4-diazatriphenylene derivatives exhibiting thermally activated delayed fluorescence: design and synthesis, photophysical properties and OLED characteristics. Sci Technol Adv Mater 15:034202

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chang C-H, Kuo M-C, Lin W-C, Chen Y-T, Wong K-T, Chou S-H, Mondal E, Kwong RC, Xia S, Nakagawa T, Adachi C (2012) A dicarbazole–triazine hybrid bipolar host material for highly efficient green phosphorescent OLEDs. J Mater Chem 22:3832–3838

    Article  CAS  Google Scholar 

  24. Lee SY, Yasuda T, Park IS, Adachi C (2015) X-shaped benzoylbenzophenone derivatives with crossed donors and acceptors for highly efficient thermally activated delayed fluorescence. Dalton Trans 44:8356–8359

    Article  PubMed  CAS  Google Scholar 

  25. Kawasumi K, Wu T, Zhu T, Chae HS, Van Voorhis T, Baldo MA, Swager TM (2015) Thermally activated delayed fluorescence materials based on Homoconjugation Effect of Donor–Acceptor triptycenes. J Am Chem Soc 137:11908–11911

    Article  PubMed  CAS  Google Scholar 

  26. Liu Y, Xie G, Wu K, Luo Z, Zhou T, Zeng X, Yu J, Gong S, Yang C (2016) Boosting reverse intersystem crossing by increasing donors in triarylboron/phenoxazine hybrids: TADF emitters for high-performance solution-processed OLEDs. J Mater Chem C 4:4402–4407

    Article  CAS  Google Scholar 

  27. Park IS, Numata M, Adachi C, Yasuda T (2016) A phenazaborin-based high-efficiency blue delayed fluorescence material. Bull Chem Soc Jpn 89:375–377

    Article  CAS  Google Scholar 

  28. Kitamoto Y, Namikawa T, Suzuki T, Miyata Y, Kita H, Sato T, Oi S (2016) Dimesitylarylborane-based luminescent emitters exhibiting highly-efficient thermally activated delayed fluorescence for organic light-emitting diodes. Org Electron 34:208–217

    Article  CAS  Google Scholar 

  29. Suzuki K, Kubo S, Shizu K, Fukushima T, Wakamiya A, Murata Y, Adachi C, Kaji H (2015) Triarylboron-based fluorescent Organic Light-Emitting diodes with External Quantum efficiencies Exceeding 20%. Angew Chem Int Ed 54:15231–15235

    Article  CAS  Google Scholar 

  30. Endo A, Sato K, Yoshimura K, Kai T, Kawada A, Miyazaki H, Adachi C (2011) Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl Phys Lett 98:083302

    Article  Google Scholar 

  31. Zhang Q, Li B, Huang S, Nomura H, Tanaka H, Adachi C (2014) Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat Photonics 8:326–332

    Article  CAS  Google Scholar 

  32. Tsai W-L, Huang M-H, Lee W-K, Hsu Y-J, Pan K-C, Huang Y-H, Ting H-C, Sarma M, Ho Y-Y, Hu H-C, Chen C-C, Lee M-T, Wong K-T, Wu C-C (2015) A versatile thermally activated delayed fluorescence emitter for both highly efficient doped and non-doped organic light emitting devices. Chem Commun 51:13662–13665

    Article  CAS  Google Scholar 

  33. Fan J, Zhang Y, Zhou Y, Lin L, Wang C-K (2018) Excited State properties of a thermally activated delayed fluorescence molecule in Solid Phase studied by Quantum Mechanics/Molecular Mechanics Method. J Phys Chem C 122:2358–2366

    Article  CAS  Google Scholar 

  34. Tsiko U, Bezvikonnyi O, Volyniuk D, Minaev BF, Keruckas J, Cekaviciute M, Jatautiene E, Andruleviciene V, Dabuliene A, Grazulevicius JV (2022) TADF quenching properties of phenothiazine or phenoxazine-substituted benzanthrones emitting in deep-red/near-infrared region towards oxygen sensing. Dyes Pigm 197:109952

    Article  CAS  Google Scholar 

  35. Lee JM, Lee SW, Kim YS (2020) Highly Charge Transport thermally activated delayed fluorescence host materials based on Benzimidazole-Acridine derivatives. J Nanosci Nanotechnol 20:5070–5074

    Article  PubMed  Google Scholar 

  36. Yu L, Wu Z, Xie G, Zeng W, Ma D, Yang C (2018) Molecular design to regulate the photophysical properties of multifunctional TADF emitters towards high-performance TADF-based OLEDs with EQEs up to 22.4% and small efficiency roll-offs. Chem Sci 9:1385–1391

    Article  PubMed  CAS  Google Scholar 

  37. Zhao T, Jiang S, Tao X-D, Yang M, Meng L, Chen X-L, Lu C-Z (2023) Dihydrophenazine-derived thermally activated delayed fluorescence emitters for highly efficient orange and red organic light-emitting diodes. Dyes Pigm 211:111065

    Article  CAS  Google Scholar 

  38. Fan J, Lin L, Wang C (2016) Decreasing the singlet–triplet gap for thermally activated delayed fluorescence molecules by structural modification on the donor fragment: first-principles study. Chem Phys Lett 652:16–21

    Article  CAS  Google Scholar 

  39. Kitamoto Y, Namikawa T, Ikemizu D, Miyata Y, Suzuki T, Kita H, Sato T, Oi S (2015) Light blue and green thermally activated delayed fluorescence from 10H-phenoxaborin-derivatives and their application to organic light-emitting diodes. J Mater Chem C 3:9122–9130

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE Jr., Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2009) Gaussian, Inc., Wallingford CT, Kara YS, Sagdinc SG, Esme A (2012) Theoretical study on the relationship between the molecular structure and corrosion inhibition efficiency of long alkyl side chain acetamide and isoxazolidine derivatives. Prot Met Phys Chem Surf 48:710–721

  41. Kara YS, Sagdinc SG, Esme A (2012) Theoretical study on the relationship between the molecular structure and corrosion inhibition efficiency of long alkyl side chain acetamide and isoxazolidine derivatives. Prot Met Phys Chem Surf 48(6):710–721. https://doi.org/10.1134/S2070205112060056

    Article  CAS  Google Scholar 

  42. Jeewandara AK, de Silva KMN (2004) Are donor–acceptor self organised aromatic systems NLO (non-linear optical) active? J Mol Struct THEOCHEM 686:131–136

    Article  CAS  Google Scholar 

  43. Samanta PK, Alam MM, Misra R, Pati SK (2019) Tuning of hyperpolarizability, and one- and two-photon absorption of donor–acceptor and donor–acceptor–acceptor-type intramolecular charge transfer-based sensors. Phys Chem Chem Phys 21:17343–17355

    Article  PubMed  CAS  Google Scholar 

  44. Guido CA, Cortona P, Mennucci B, Adamo C (2013) On the Metric of charge transfer Molecular excitations: a simple Chemical Descriptor. J Chem Theory Comput 9:3118–3126

    Article  PubMed  CAS  Google Scholar 

  45. Gruhn NE, da Silva Filho DA, Bill TG, Malagoli M, Coropceanu V, Kahn A, Brédas J-L (2002) The Vibrational Reorganization Energy in Pentacene: Molecular influences on Charge Transport. J Am Chem Soc 124:7918–7919

    Article  PubMed  CAS  Google Scholar 

  46. Lin BC, Cheng CP, You Z-Q, Hsu C-P (2005) Charge Transport Properties of Tris(8-hydroxyquinolinato)aluminum(III): why it is an Electron transporter. J Am Chem Soc 127:66–67

    Article  PubMed  CAS  Google Scholar 

  47. Hilborn RC (1982) Einstein coefficients, cross sections, f values, dipole moments, and all that. Am J Phys 50:982–986

    Article  CAS  Google Scholar 

  48. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology, Biochim. Biophys Acta BBA - Rev Bioenerg 811:265–322

    Article  CAS  Google Scholar 

  49. Gao X, Bai S, Fazzi D, Niehaus T, Barbatti M, Thiel W (2017) Evaluation of spin-orbit couplings with Linear-Response Time-Dependent Density Functional methods. J Chem Theory Comput 13:515–524

    Article  PubMed  CAS  Google Scholar 

  50. Reimers JR (2001) A practical method for the use of curvilinear coordinates in calculations of normal-mode-projected displacements and duschinsky rotation matrices for large molecules. J Chem Phys 115:9103–9109

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Paras acknowledges Council of Scientific and Industrial Research (CSIR), New Delhi for the fellowship. CNR is grateful to the Scientific and Engineering Research Board (SERB) for the Research Grant EMR/2016/008024. The authors acknowledge Indian Institute Technology Roorkee for the infrastructure.

Funding

C. N. Ramachandran: Science and Engineering Research Board (SERB), Research Grant: EMR/2016/008024.

Author information

Authors and Affiliations

Authors

Contributions

CNR conceived the investigation. Paras performed the calculations. Both authors analyzed the results and wrote the manuscript.

Corresponding author

Correspondence to C. N. Ramachandran.

Ethics declarations

Ethical Approval

This research did not involve human or animal samples.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paras, Ramachandran, C.N. Tuning the Electronic and Optical Properties of Phenoxaborin Based Thermally Activated Delayed Fluorescent Materials: A DFT Study. J Fluoresc (2024). https://doi.org/10.1007/s10895-023-03545-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03545-0

Keywords

Navigation