Skip to main content
Log in

Fluorescence Quenching and the Chamber of Nitroaromatics: A Dinaphthoylated Oxacalix[4]arene’s (DNOC) Adventure Captured through Computational and Experimental Study

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

This research presents the application of Dinaphthoylated Oxacalix[4]arene (DNOC) as a novel fluorescent receptor for the purpose of selectively detecting nitroaromatic compounds (NACs). The characterization of DNOC was conducted through the utilization of spectroscopic methods, including 1H-NMR, 13C-NMR, and ESI-MS. The receptor demonstrated significant selectivity in acetonitrile towards several nitroaromatic analytes, such as MNA, 2,4-DNT, 2,3-DNT, 1,3-DNB, 2,6-DNT, and 4-NT. This selectivity was validated by the measurement of emission spectra. The present study focuses on the examination of binding constants, employing Stern-Volmer analysis, as well as the determination of the lowest detection limit (3σ/Slope) and fluorescence quenching. These investigations aim to provide insights into the inclusion behavior of DNOC with each of the six analytes under fluorescence spectra investigation. Furthermore, the selectivity trend of the ligand DNOC for NAC detection is elucidated using Density Functional Theory (DFT) calculations conducted using the Gaussian 09 software. The examination of energy gaps existing between molecular orbitals, namely the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), provides a valuable understanding of electron-transfer processes and electronic interactions. Smaller energy gaps are indicative of heightened selectivity resulting from favorable electron-transfer processes, whereas bigger gaps suggest less selectivity attributable to weaker electronic contacts. This work integrates experimental and computational methodologies to provide a full understanding of the selective binding behavior of DNOC. As a result, DNOC emerges as a viable chemical sensor for detecting nitroaromatic explosives.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

Data will be available upon request.

Reference

  1. da Costa Filho BM, Duarte AC, Rocha-Santos TAP (2022) Environmental monitoring approaches for the detection of organic contaminants in marine environments: A critical review. Trends in Environmental Analytical Chemistry 33:e00154

    Article  Google Scholar 

  2. Liaquat H, Imran M, Latif S, Hussain N, Bilal M (2022) Multifunctional nanomaterials and nanocomposites for sensing and monitoring of environmentally hazardous heavy metal contaminants. Environ Res 214:113795

    Article  CAS  PubMed  Google Scholar 

  3. Majeed S, Junaid HM, Waseem MT, Mahmood T, Farooq U, Shahzad SA (2022) Receptor free fluorescent and colorimetric sensors for solution and vapor phase detection of hazardous pollutant nitrobenzene; a new structural approach to design AIEE active and piezofluorochromic sensors. J Photochem Photobiol A Chem 431:114022

    Article  CAS  Google Scholar 

  4. Woodfin RL (2006) Trace chemical sensing of explosives. John Wiley & Sons

    Book  Google Scholar 

  5. Ma H, Li B, Zhang L, Han D, Zhu G (2015) Targeted synthesis of core–shell porous aromatic frameworks for selective detection of nitro aromatic explosives via fluorescence two-dimensional response. J Mater Chem A Mater 3(38):19346–19352

    Article  CAS  Google Scholar 

  6. Thomas SW, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107(4):1339–1386

    Article  CAS  PubMed  Google Scholar 

  7. Steinfeld JI, Wormhoudt J (1998) Explosives detection: a challenge for physical chemistry. Annu Rev Phys Chem 49(1):203–232

    Article  CAS  PubMed  Google Scholar 

  8. Afzal A, Iqbal N, Mujahid A, Schirhagl R (2013) Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: A review. Anal Chim Acta 787:36–49

    Article  CAS  PubMed  Google Scholar 

  9. Agbaria RA, Oldham PB, McCarroll M, McGown LB, Warner IM (2002) Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. Anal Chem 74(16):3952–3962

    Article  CAS  PubMed  Google Scholar 

  10. Griffin TM, Popkie N Jr, Eagan MA, McAtee RF, Vrazel D, McKinly J (2005) Instrument response measurements of ion mobility spectrometers in situ: Maintaining optimal system performance of fielded systems. Chemical and Biological Sensing VI 5795:54–64

    Article  Google Scholar 

  11. Czarnik AW (1998) A sense for landmines. Nature 394(6692):417–418

    Article  CAS  Google Scholar 

  12. Gottfried JL, De Lucia FC, Munson CA, Miziolek AW (2009) Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects. Anal Bioanal Chem 395(2):283–300

    Article  CAS  PubMed  Google Scholar 

  13. Caygill JS, Davis F, Higson SPJ (2012) Current trends in explosive detection techniques. Talanta 88:14–29

    Article  CAS  PubMed  Google Scholar 

  14. Kuligowski J, Quintás G, De la Guardia M, Lendl B (2010) Analytical potential of mid-infrared detection in capillary electrophoresis and liquid chromatography: A review. Anal Chim Acta 679(1–2):31–42

    Article  CAS  PubMed  Google Scholar 

  15. Cooks RG, Ouyang Z, Takats Z, Wiseman JM (1979) (2006) Ambient mass spectrometry. Science 311(5767):1566–1570

    Article  Google Scholar 

  16. Pablos JL, Trigo-López M, Serna F, García FC, García JM (2014) Water-soluble polymers, solid polymer membranes, and coated fibres as smart sensory materials for the naked eye detection and quantification of TNT in aqueous media. Chemical Communications 50(19):2484–2487

    Article  CAS  PubMed  Google Scholar 

  17. Salinas Y, Martínez-Máñez R, Marcos MD, Sancenón F, Costero AM, Parra M, Gil S (2012) Optical chemosensors and reagents to detect explosives. Chem Soc Rev 41(3):1261–1296

    Article  CAS  PubMed  Google Scholar 

  18. Kartha KK, Babu SS, Srinivasan S, Ajayaghosh A (2012) Attogram sensing of trinitrotoluene with a self-assembled molecular gelator. J Am Chem Soc 134(10):4834–4841

    Article  CAS  PubMed  Google Scholar 

  19. Gopalakrishnan D, Dichtel WR (2013) Direct detection of RDX vapor using a conjugated polymer network. J Am Chem Soc 135(22):8357–8362

    Article  CAS  PubMed  Google Scholar 

  20. Desai V, Panchal M, Dey S, Panjwani F, Jain VK (2021) Recent Advancements for the Recognization of Nitroaromatic Explosives Using Calixarene Based Fluorescent Probes. J Fluoresc 1–13

  21. Germain ME, Knapp MJ (2009) Optical explosives detection: from color changes to fluorescence turn-on. Chem Soc Rev 38(9):2543–2555

    Article  CAS  PubMed  Google Scholar 

  22. Mehta V, Panchal M, Modi K, Kongor A, Panchal U, Jain VK (2015) The chemistry of nascent oxacalix [n] hetarene (n≥ 4): a review. Curr Org Chem 19(12):1077–1096

    Article  CAS  Google Scholar 

  23. Katz JL, Feldman MB, Conry RR (2005) Synthesis of functionalized oxacalix [4] arenes. Org Lett 7(1):91–94

    Article  CAS  PubMed  Google Scholar 

  24. Vora M, Dey S, Kongor A, Panchal M, Verma A, Padhiyar N, Jain VK (2022) Design of bi-pyrene functionalized oxacalixarene probe for ratiometric detection of Fe3+ and PO43-ions. J Mol Liq 118601

  25. Dey S, Modi K, Panchal U, Panchal M, Jain VK (2021) Detection of small molecular toxins using azacalix [4] arene architecture and its theoretical investigations. J Mol Liq 337:116337

    Article  CAS  Google Scholar 

  26. Sutariya PG, Soni H, Gandhi SA, Soni SS, Prasad J (2021) A dual-response naphthalene-armed calix [4] arene based fluorescence receptor for Zr (IV) and Fe (II) via Ligand to metal charge transfer. Sens Actuators B Chem 331:129417

    Article  CAS  Google Scholar 

  27. Quiroga-Campano C, Gómez-Machuca H, Moris S, Pessoa-Mahana H, Jullian C, Saitz C (2021) Synthesis of calix [4] arenes bearing thiosemicarbazone moieties with naphthalene groups: Highly selective turn off/on fluorescent sensor for Cu (II) recognition. J Mol Struct 1225:129125

    Article  CAS  Google Scholar 

  28. Bhatti AA, Oguz M, Memon S, Yilmaz M (2017) Dual fluorescence response of newly synthesized naphthalene appended calix [4] arene derivative towards Cu 2+ and I−. J Fluoresc 27:263–270

    Article  CAS  PubMed  Google Scholar 

  29. Mao X, Yang L, Zou Z, Luo L, Zhang X, Tian D, Deng H, Li H (2015) Dye responsive optical-electrochemical-wettability on a naphthalene-appended calix [4] arene clicking surface. Sens Actuators B Chem 212:371–376

    Article  CAS  Google Scholar 

  30. Zhang X, Chen S, Jin S, Zhang Y, Chen X, Zhang Z, Shu Q (2017) Naphthalene based lab-on-a-molecule for fluorimetric and colorimetric sensing of F− and CN− and nitroaromatic explosives. Sens Actuators B Chem 242:994–998

    Article  CAS  Google Scholar 

  31. Bal M, Köse A, Özpaça Ö, Köse M (2023) Pyrene, Anthracene, and Naphthalene-Based Azomethines for Fluorimetric Sensing of Nitroaromatic Compounds. J Fluoresc 1–13

  32. Jiang Z-J, Lv H-S, Zhu J, Zhao B-X (2012) New fluorescent chemosensor based on quinoline and coumarine for Cu2+. Synth Met 162(23):2112–2116

    Article  CAS  Google Scholar 

  33. Kumar RS, Kumar SKA (2019) Highly selective fluorescent chemosensor for the relay detection of Al3+ and picric acid. Inorg Chem Commun 106:165–173

    Article  Google Scholar 

  34. Modi K, Panchal U, Patel C, Bhatt K, Dey S, Mishra D, Jain VK (2018) Dual in vitro and in silico analysis of thiacalix [4] arene dinaphthalene sulfonate for the sensing of 4-nitrotoluene and 2, 3-dinitrotoluene. New Journal of Chemistry 42(4):2682–2691

    Article  CAS  Google Scholar 

  35. Prata JV, Costa AI, Teixeira CM (2020) A solid-state fluorescence sensor for nitroaromatics and nitroanilines based on a conjugated calix [4] arene polymer. J Fluoresc 30(1):41–50

    Article  CAS  PubMed  Google Scholar 

  36. Barata PD, Prata JV (2020) Fluorescent Calix [4] arene-Carbazole-Containing Polymers as Sensors for Nitroaromatic Explosives. Chemosensors 8(4):128

    Article  CAS  Google Scholar 

  37. Peveler WJ, Roldan A, Hollingsworth N, Porter MJ, Parkin IP (2016) Multichannel detection and differentiation of explosives with a quantum dot array. ACS Nano 10(1):1139–1146

    Article  CAS  PubMed  Google Scholar 

  38. Panchal M, Kongor A, Athar M, Modi K, Patel C, Dey S, Vora M, Bhadresha K, Rawal R, Jha PC (2020) Structural motifs of oxacalix [4] arene for molecular recognition of nitroaromatic explosives: Experimental and computational investigations of host-guest complexes. J Mol Liq 306:112809

    Article  CAS  Google Scholar 

  39. Panchal U, Modi K, Dey S, Prajapati U, Patel C, Jain VK (2017) A resorcinarene-based “turn-off” fluorescence sensor for 4-nitrotoluene: Insights from fluorescence and 1H NMR titration with computational approach. J Lumin 184:74–82

    Article  CAS  Google Scholar 

  40. Mehta V, Athar M, Jha PC, Kongor A, Panchal M, Jain VK (2017) A turn-off fluorescence sensor for insensitive munition using anthraquinone-appended oxacalix [4] arene and its computational studies. New Journal of Chemistry 41(12):5125–5132

    Article  CAS  Google Scholar 

  41. Sarkar U, Khatua M, Chattaraj PK (2012) A tug-of-war between electronic excitation and confinement in a dynamical context. Physical Chemistry Chemical Physics 14(5):1716–1727

    Article  CAS  PubMed  Google Scholar 

  42. Sarkar U (2002) Ground and excited states reactivity dynamics of hydrogen and helium atoms

  43. Desai AL, Bhatt K, Modi KM, Patel NP, Panchal M, Kongor A, Patel CN, Liška A (2022) Calix [4] pyrrole based scrupulous probe for track on of tryptophan: Host-guest interaction, in silico modeling and molecular docking insights. Chem Phys 554:111426

    Article  CAS  Google Scholar 

  44. Bandyopadhyay P, Karmakar A, Deb J, Sarkar U, Seikh MM (2020) Non-covalent interactions between epinephrine and nitroaromatic compounds: A DFT study. Spectrochim Acta A Mol Biomol Spectrosc 228:117827

    Article  CAS  PubMed  Google Scholar 

  45. Sarkar U (2005) Formaldehyde decomposition through profiles of global reactivity indices

  46. Dorafshan Tabatabai AS, Dehghanian E, Mansouri-Torshizi H, Feizi-Dehnayebi M (2023) Computational and experimental examinations of new antitumor palladium (II) complex: CT-DNA-/BSA-binding, in-silico prediction, DFT perspective, docking, molecular dynamics simulation and ONIOM. J Biomol Struct Dyn 1–23

  47. Inac H, Ashfaq M, Dege N, Feizi-Dehnayebi M, Munawar KS, Yağcı NK, Çınar EP, Tahir MN (2023) Synthesis, Spectroscopic Characterizations, Single Crystal XRD, Supramolecular Assembly Inspection via Hirshfeld Surface Analysis, and DFT Study of a Hydroxy Functionalized Schiff base Cu (II) complex. J Mol Struct 136751

  48. Feizi-Dehnayebi M, Dehghanian E, Mansouri-Torshizi H (2022) Biological activity of bis-(morpholineacetato) palladium (II) complex: Preparation, structural elucidation, cytotoxicity, DNA-/serum albumin-interaction, density functional theory, in-silico prediction and molecular modeling. Spectrochim Acta A Mol Biomol Spectrosc 281:121543

    Article  CAS  PubMed  Google Scholar 

  49. Milusheva M, Gledacheva V, Stefanova I, Feizi-Dehnayebi M, Mihaylova R, Nedialkov P, Cherneva E, Tumbarski Y, Tsoneva S, Todorova M (2023) Synthesis, Molecular Docking, and Biological Evaluation of Novel Anthranilic Acid Hybrid and Its Diamides as Antispasmodics. Int J Mol Sci 24(18):13855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nikolova S, Milusheva M, Gledacheva V, Feizi-Dehnayebi M, Kaynarova L, Georgieva D, Delchev V, Stefanova I, Tumbarski Y, Mihaylova R (2023) Drug-Delivery Silver Nanoparticles: A New Perspective for Phenindione as an Anticoagulant. Biomedicines 11(8):2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Feizi-Dehnayebi M, Dehghanian E, Mansouri-Torshizi H (2022) Probing the biomolecular (DNA/BSA) interaction by new Pd (II) complex via in-depth experimental and computational perspectives: synthesis, characterization, cytotoxicity, and DFT approach. Journal of the Iranian Chemical Society 19(7):3155–3175

    Article  CAS  PubMed Central  Google Scholar 

  52. Li Y, Liu K, Li W-J, Guo A, Zhao F-Y, Liu H, Ruan W-J (2015) Coordination polymer nanoarchitecture for nitroaromatic sensing by static quenching mechanism. The Journal of Physical Chemistry C 119(51):28544–28550

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the financial assistance provided by LSRBDRDO, New Delhi, through the project scheme REF. No (LSRB-01/15001/M/LSRB-373/BTB/2020).

Author information

Authors and Affiliations

Authors

Contributions

Vishv Desai: Writing- Original draft preparation, Data curation, DFT study. Manthan Panchal: Validation, Investigation. Jaymin Parikh: Computational study (writing). Krunal Modi: Formal analysis, Software. Manoj Vora: DFT study, Writing- Reviewing and Editing. Falak Panjwani: Methodology, Visualization. Vinod K Jain: Supervision, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Manthan Panchal, Krunal Modi or Vinod Kumar Jain.

Ethics declarations

Ethical Approval

Not applicable

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2364 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, V., Panchal, M., Parikh, J. et al. Fluorescence Quenching and the Chamber of Nitroaromatics: A Dinaphthoylated Oxacalix[4]arene’s (DNOC) Adventure Captured through Computational and Experimental Study. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03505-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03505-8

Keywords

Navigation