Skip to main content

Advertisement

Log in

A Simple and Low-cost Preliminary Quantification of Target Membrane Protein in Single Cells

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

To study the heterogeneity of target membrane proteins in single cells with cellular integrity, we proposed a simple and low-cost method to obtain the copy number of the membrane proteins. HeLa cells were labeled by FITC affinity bodies specifically targeting HER2 membrane proteins. The immunolabeled HeLa cells were quantified by a laboratory-built laser induced fluorescence detector. A series of fluorescent microspheres with known number of FITC molecules on the surface were used to establish the calibration curve, instead of the standard fluorescent solutions, because the morphology of the microspheres was similar to the cells, and the distribution of FITC on the spheres were similar to the distribution of HER2 on the HeLa. The fluorescence intensity of the cells was converted to the molecule number of HER2 by the calibration curve. A capillary electrophoresis system was used to drive the microspheres and cells through the detection window. The copy number of HER2 in HeLa cells ranged from 4,036 to 1,224,920 ± 100 (2.5–97.5%), and the median of copy numbers were 104,438 ± 100 per cell. This method for measuring low-abundance membrane proteins can be utilized for the initial exploration of proteomics in ordinary laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ellinger I, Ellinger A (2014) Smallest Unit of Life: Cell Biology. 19–33. https://doi.org/10.1007/978-3-7091-1559-6_2

  2. Yoshikatsu, Matsubayashi M, Ogawa A, Morita Y, Sakagam (2002) An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science 296(5572):1470–1472. https://doi.org/10.1126/science.1069607

    Article  PubMed  Google Scholar 

  3. Zickermann V, Wirth C, Nasiri H, Siegmund K, Schwalbe H, Hunte C, Brandt U (2015) Mechanistic insight from the crystal structure of mitochondrial complex I. Science 347(6217):44–49. https://doi.org/10.1126/science.1259859

    Article  CAS  PubMed  Google Scholar 

  4. Hardie RC, Franze K (2012) Photomechanical responses in drosophila photoreceptors. Science 338(6104):260–263. https://doi.org/10.1126/science.1222376

    Article  CAS  PubMed  Google Scholar 

  5. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJV (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322(5901):590–594. https://doi.org/10.1126/science.1163518

    Article  CAS  PubMed  Google Scholar 

  6. Kim S, Malinverni JC, Sliz P, Silhavy TJ, Harrison SC, Kahne D (2007) Structure and function of an essential component of the outer membrane protein assembly machine. Science 317(5840):961–964. https://doi.org/10.1126/science.114399

    Article  CAS  PubMed  Google Scholar 

  7. Gong J, Chen Y, Pu F, Sun P, He F, Zhang L, Li Y, Ma Z, Wang H (2019) Understanding membrane protein drug targets in computational perspective. Curr Drug Targets 20(5):551–564. https://doi.org/10.2174/1389450120666181204164721

    Article  CAS  PubMed  Google Scholar 

  8. Cocco E, Carmona FJ, Razavi P, Won HH, Cai Y, Rossi V, Chan C, Cownie J, Soong J, Toska E, Shifman SG, Sarotto I, Savas P, Wick MJ, Papadopoulos KP, Moriarty A, Avogadri-Connors REC Jr., Lalani AS, Bryce RP, Chandarlapaty S, Hyman DM, Solit DB, Boni V, Loi S, Baselga J, Berger MF, Montemurro F, Scaltriti M (2018) Neratinib is effective in breast tumors bearing both amplification and mutation of ERBB2 (HER2). Sci Signal 11(511). https://doi.org/10.1126/scisignal.aat9773

  9. Xu M, Du X, Liu M, Li S, Li X, Fu YX, Wang S (2012) The Tumor immunosuppressive microenvironment impairs the therapy of anti-HER2/neu antibody. Protein Cell 3(6):441–449. https://doi.org/10.1007/s13238-012-2044-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cooke T, Reeves J, Lannigan A, Stanton P (2001) The value of the human epidermal growth factor receptor-2 (HER2) as a prognostic marker. Eur J Cancer 37(1):S3–S10. https://doi.org/10.1016/S0959-8049(00)00402-0

    Article  CAS  PubMed  Google Scholar 

  11. Wen N, Zhao Z, Fan B, Chen D, Men D, Wang J, Chen J (2016) Development of Droplet Microfluidics Enabling High-Throughput single-cell analysis. Molecules 21(7). https://doi.org/10.3390/molecules21070881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Norman TM, Horlbeck MA, Replogle JM, Ge AY, Xu A, Jost M, Gilbert LA (2019) Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science 365(6455):786–793. https://doi.org/10.1126/science.aax4438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zenobi R (2013) Single-cell metabolomics: analytical and biological perspectives. Science 342(6163). https://doi.org/10.1126/science.1243259

    Article  CAS  PubMed  Google Scholar 

  14. Chen Q, Yan G, Gao M, Zhang X (2015) Ultrasensitive Proteome profiling for 100 living cells by direct cell injection, Online Digestion and Nano-LC-MS/MS analysis. Anal Chem 87(13):6674–6680. https://doi.org/10.1021/acs.analchem.5b00808

    Article  CAS  PubMed  Google Scholar 

  15. Huang B, Wu HK, Bhaya D, Grossman A, Granier S, Kobilka BK, Zare RN (2007) Counting low-copy number proteins in a single cell. Science 315(5808):81–84. https://doi.org/10.1126/science.1133992

  16. Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, Paabo S, Mann M (2011) Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol 7:548. https://doi.org/10.1038/msb.2011.81

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yu J, Xiao J, Ren XJ, Lao KQ, Xie XS (2006) Probing gene expression in live cells, one protein molecule at a time. Science 311(5767):1600–1603. https://doi.org/10.1126/science.1119623

    Article  CAS  PubMed  Google Scholar 

  18. Li X, Fan B, Cao S, Chen D, Zhao X, Men D, Yue W, Wang J, Chen J (2017) A microfluidic flow cytometer enabling absolute quantification of single-cell intracellular proteins. Lab Chip 17(18):3129–3137. https://doi.org/10.1039/c7lc00546f

    Article  CAS  PubMed  Google Scholar 

  19. Yu H, Tai Q, Yang C, Weng L, Gao M, Zhang X (2022) Counting protein number in a single cell by a Picoliter Liquid Operating Technology. Anal Chem 94(34):11925–11933. https://doi.org/10.1021/acs.analchem.2c02701

    Article  CAS  PubMed  Google Scholar 

  20. Sato T, Miyake R (2017) Cell measurement by using a flow cytometry chip with a twisted micro-sheath flow channel. Anal Methods 9(26):3992–3997. https://doi.org/10.1039/c7ay00886d

    Article  CAS  Google Scholar 

  21. Geng X, Shi M, Ning H, Feng C, Guan Y (2018) A compact and low-cost laser induced fluorescence detector with silicon based Photodetector assembly for capillary flow systems. Talanta 182:279–284. https://doi.org/10.1016/j.talanta.2018.01.076

    Article  CAS  PubMed  Google Scholar 

  22. Orlova A, Magnusson M, Eriksson TL, Nilsson M, Larsson B, Hoiden-Guthenberg I, Widstrom C, Carlsson J, Tolmachev V, Stahl S, Nilsson FY (2006) Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 66(8):4339–4348. https://doi.org/10.1158/0008-5472.CAN-05-3521

    Article  CAS  PubMed  Google Scholar 

  23. Zhang H, Jin W (2006) Single-cell analysis by intracellular immuno-reaction and capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr A 1104(1–2):346–351. https://doi.org/10.1016/j.chroma.2005.11.083

    Article  CAS  PubMed  Google Scholar 

  24. Zhu Y, Chandra P, Shim YB (2013) Ultrasensitive and selective electrochemical diagnosis of Breast cancer based on a hydrazine-Au nanoparticle-aptamer bioconjugate. Anal Chem 85(2):1058–1064. https://doi.org/10.1021/ac302923k

    Article  CAS  PubMed  Google Scholar 

  25. Shi M, Geng X, Wang C, Guan Y (2019) Quantification of Low Copy Number proteins in single cells. Anal Chem 91(18):11493–11496. https://doi.org/10.1021/acs.analchem.9b02989

    Article  CAS  PubMed  Google Scholar 

  26. Lundberg E, Hoiden-Guthenberg I, Larsson B, Uhlen M, Graslund T (2007) Site-specifically conjugated anti-HER2 affibody molecules as one-step reagents for target expression analyses on cells and xenograft samples. J Immunol Methods 319(1–2):53–63. https://doi.org/10.1016/j.jim.2006.10.013

    Article  CAS  PubMed  Google Scholar 

  27. Renberg Br, Nordin J, Merca A, Uhle´n M, Feldwisch J, Nygren P-Ak, Karlstro AE 1 (2007) m Affibody Molecules in Protein Capture Microarrays: Evaluation of Multidomain Ligands and Different Detection Formats. J Proteome Res 6:171–179. https://doi.org/10.1021/pr060316r

  28. Chen C, Zhang X, Zhang S, Zhu S, Xu J, Zheng Y, Han J, Zeng JZ, Yan X (2015) Quantification of protein copy number in single mitochondria: the Bcl-2 family proteins. Biosens Bioelectron 74:476–482. https://doi.org/10.1016/j.bios.2015.06.057

    Article  CAS  PubMed  Google Scholar 

  29. Xiao H, Li X, Zou HF, Yang L, Yang YQ, Wang YL, Wang HL, Le XC (2006) Immunoassay of P-glycoprotein on single cell by capillary electrophoresis with laser induced fluorescence detection. Anal Chim Acta 556(2):340–346. https://doi.org/10.1016/j.aca.2005.09.051

    Article  CAS  Google Scholar 

  30. Taylor TH, Frost NW, Bowser MT, Arriaga EA (2014) Analysis of individual mitochondria via fluorescent immunolabeling with Anti-TOM22 antibodies. Anal Bioanal Chem 406(6):1683–1691. https://doi.org/10.1007/s00216-013-7593-7)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Davis JM, Arriaga EA (2009) Evaluation of peak overlap in migration-time distributions determined by organelle capillary electrophoresis: Type-II error analogy based on statistical-overlap theory. J Chromatogr A 1216(35):6335–6342. https://doi.org/10.1016/j.chroma.2009.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zeiler M, Straube WL, Lundberg E, Uhlen M, Mann M (2012) A protein epitope signature tag (PrEST) library allows SILAC-based absolute quantification and multiplexed determination of protein copy numbers in cell lines. Mol Cell Proteomics 11(3):O111009613. https://doi.org/10.1074/mcp.O111.009613

    Article  CAS  Google Scholar 

  33. Qian H, Zhao X, Cao P, Lei J, Yan N, Gong X (2017) Structure of the human lipid exporter ABCA1. Cell 169(7):1228-1239e10. https://doi.org/10.1016/j.cell.2017.05.020

    Article  CAS  PubMed  Google Scholar 

  34. Bodzioch M, Orsó E, Klucken J, Langmann T, Böttcher A, Diederich W, Drobnik W, Barlage S, Büchler C, Porsch-Özcürümez M, Kaminski WE, Hahmann HW, Oette K, Rothe G, Aslanidis C, Lackner KJ, Schmitz G (1999) The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier Disease. Nat Genet 22(4):347–351. https://doi.org/10.1038/11914

    Article  CAS  PubMed  Google Scholar 

  35. Hong SH, Rhyne J, Zeller K, Miller M (2002) ABCA1(Alabama): a novel variant associated with HDL deficiency and premature coronary artery Disease. Atherosclerosis 164(2):245–250. https://doi.org/10.1016/S0021-9150(02)00106-5

    Article  CAS  PubMed  Google Scholar 

  36. Oram JF, Vaughan AM (2006) ATP-Binding cassette cholesterol transporters and Cardiovascular Disease. Circ Res 99(10):1031–1043. https://doi.org/10.1161/01.RES.0000250171.54048.5c

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks for professor Liming Wang of Dalian Medical University for the supplement of cells. Thanks for associated professor Shenghong Li of Dalian Institute of Chemical Physics for her effective suggestions.

Funding

This research was funded by the Youth Innovation Promotion Association of the Chinese Academy of Sciences, grant number 2019186, and the Natural Science Foundation of China, grant number 22106014.

Author information

Authors and Affiliations

Authors

Contributions

Jiamin Li and Meng Shi and established the analytical method on single cell analysis by CE-LIF system, and Jiamin Li wrote the main manuscript text. Xuhui Geng built the LIF. Yafeng Guan put forward the idea and guided the whole work.

Corresponding author

Correspondence to Yafeng Guan.

Ethics declarations

Ethical Approval

This declaration is not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jiamin Li and Meng Shi are contributed equally.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Shi, M., Geng, X. et al. A Simple and Low-cost Preliminary Quantification of Target Membrane Protein in Single Cells. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03496-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03496-6

Keywords

Navigation