Skip to main content

Advertisement

Log in

Coumarin Based Fluorescent Probe for Detecting Heavy Metal Ions

  • REVIEW
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Heavy metals such as Iron, Copper, and Zinc are micro-essential trace metal and involve animportant biological role, but it quickly turns toxic at exceeding the permissible limit, causing gastrointestinal irritation, liver, bone, and kidney damage, as well as disorders including Wilson's, Parkinson's, and Alzheimer's. It is important to detect the metal ions as well as their concentration quickly and affordable cost using organic probes. Among the organic probes,the coumarin fluorescent probe shows a very prominent candidate with heavy metal ions. Therefore, in the present review, we reviewed the very recent literature the identify the heavy metals using modified coumarin fluorescent probes. Readers will get information quickly about the method of preparation of modified coumarin core and their use as fluorescent probes with heavy metals using absorption and emission spectroscopic methods along with the probable mechanistic pathway of detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Scheme 3
Fig. 4
Scheme 4
Fig. 5
Scheme 5
Scheme 6
Fig. 6
Scheme 7
Fig. 7
Scheme 8
Fig. 8
Scheme 9
Fig. 9
Fig. 10
Scheme 10
Fig. 11
Fig. 12
Scheme 11
Fig. 13
Scheme 12
Fig. 14
Scheme 13
Fig. 15
Scheme 14
Fig. 16
Scheme 15
Fig. 17
Scheme 16
Fig. 18
Scheme 17
Fig. 19
Scheme 18
Fig. 20
Scheme 19
Fig. 21
Fig. 22
Scheme 20
Fig. 23
Scheme 21
Scheme 22
Fig. 24
Scheme 23
Fig. 25
Scheme 24
Fig. 26
Scheme 25
Fig. 27
Scheme 26
Fig. 28
Scheme 27
Fig. 29

Similar content being viewed by others

Availability of Data and Material

All the written material is new. 

Code Availability

Not Applicable.

References

  1. Nikhil B, Shikha B, Anil P, Prakash NB (2012) Diverse pharmacological activities of 3-substituted coumarins: a review. 3:24–29

  2. Kontogiorgis C, Detsi A, Hadjipavlou-Litina D (2012) Coumarin-based drugs: a patent review (2008 -- present). Expert Opin Ther Pat 22:437–454. https://doi.org/10.1517/13543776.2012.678835

    Article  CAS  PubMed  Google Scholar 

  3. Venugopala KN, Rashmi V, Odhav B (2013) Review on natural coumarin lead compounds for their pharmacological activity. Biomed Res Int 2013:e963248. https://doi.org/10.1155/2013/963248

    Article  CAS  Google Scholar 

  4. Prahadeesh N, Sithambaresan M, Mathiventhan U (2018) A study on Hydrogen Peroxide Scavenging Activity and Ferric reducing ability of simple coumarins. Emerg Sci J 2:417–427. https://doi.org/10.28991/esj-2018-01161

    Article  Google Scholar 

  5. Kulkarni MV, Kulkarni GM, Lin C-H, Sun C-M (2006) Recent advances in Coumarins and 1-Azacoumarins as versatile Biodynamic Agents. Curr Med Chem 13:2795–2818. https://doi.org/10.2174/092986706778521968

  6. Lončarić M, Gašo-Sokač D, Jokić S, Molnar M (2020) Recent advances in the synthesis of coumarin derivatives from different starting materials. Biomolecules 10:151. https://doi.org/10.3390/biom10010151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vekariya RH, Patel HD (2014) Recent advances in the synthesis of coumarin derivatives via Knoevenagel Condensation: a review. Synth Commun 44:2756–2788. https://doi.org/10.1080/00397911.2014.926374

    Article  CAS  Google Scholar 

  8. He X, Yan Z, Hu X et al (2014) FeCl3-Catalyzed Cascade reaction: an efficient Approach to Functionalized coumarin derivatives. Synth Commun 44:1507–1514. https://doi.org/10.1080/00397911.2013.862833

    Article  CAS  Google Scholar 

  9. Musa MA, Cooperwood JS, Khan MOF (2008) A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr Med Chem 15:2664–2679. https://doi.org/10.2174/092986708786242877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Paul S, Roy P, Das S et al (2021) Addressing the Exigent Role of a coumarin fluorophore toward finding the suitable microenvironment of Biomimicking and Biomolecular Systems: steering to Project the Drug Designing and Drug Delivery Study. ACS Omega 6:11878–11896. https://doi.org/10.1021/acsomega.0c06152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Paul S, Ghanti R, Sardar PS, Majhi A (2019) Synthesis of a novel coumarin derivative and its binding interaction with serum albumins. Chem Heterocycl Comp 55:607–611. https://doi.org/10.1007/s10593-019-02505-6

    Article  CAS  Google Scholar 

  12. Paul S, Roy P, Saha Sardar P, Majhi A (2019) Design, synthesis, and Biophysical Studies of Novel 1,2,3-Triazole-based quinoline and coumarin compounds. ACS Omega 4:7213–7230. https://doi.org/10.1021/acsomega.9b00414

    Article  CAS  Google Scholar 

  13. Liu H, Ren Z-L, Wang W et al (2018) Novel coumarin-pyrazole carboxamide derivatives as potential topoisomerase II inhibitors: design, synthesis and antibacterial activity. Eur J Med Chem 157:81–87. https://doi.org/10.1016/j.ejmech.2018.07.059

    Article  CAS  PubMed  Google Scholar 

  14. Basanagouda M, Shivashankar K, Kulkarni MV et al (2010) Synthesis and antimicrobial studies on novel sulfonamides containing 4-azidomethyl coumarin. Eur J Med Chem 45:1151–1157. https://doi.org/10.1016/j.ejmech.2009.12.022

    Article  CAS  PubMed  Google Scholar 

  15. Soni J, Soman S (2014) Reactions of coumarin-3-carboxylate, its crystallographic study and antimicrobial activity. Der Pharma Chemica 6:396–403

    Google Scholar 

  16. Vyas KB, Nimavat KS, Jani GR, Hathi MV (2009) Synthesis and antimicrobial activity of coumarin derivatives metal complexes: an in vitro evaluation. Orbital: The Electronic Journal of Chemistry 1:183–192. https://doi.org/10.17807/orbital.v1i2.38

    Article  CAS  Google Scholar 

  17. Wei Y, Li S, Hao S (2018) New angular oxazole-fused coumarin derivatives: synthesis and biological activities. Nat Prod Res 32:1824–1831. https://doi.org/10.1080/14786419.2017.1405408

    Article  CAS  PubMed  Google Scholar 

  18. Matos MJ, Mura F, Vazquez-Rodriguez S et al (2015) Study of coumarin-resveratrol hybrids as potent antioxidant compounds. Molecules 20:3290–3308. https://doi.org/10.3390/molecules20023290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nagamallu R, Srinivasan B, Ningappa MB, Kariyappa AK (2016) Synthesis of novel coumarin appended bis(formylpyrazole) derivatives: studies on their antimicrobial and antioxidant activities. Bioorg Med Chem Lett 26:690–694. https://doi.org/10.1016/j.bmcl.2015.11.038

    Article  CAS  PubMed  Google Scholar 

  20. Salem MAI, Marzouk MI, El-Kazak AM (2016) Synthesis and characterization of some New Coumarins with in Vitro Antitumor and antioxidant activity and high Protective Effects against DNA damage. Molecules 21:249. https://doi.org/10.3390/molecules21020249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen LZ, Sun WW, Bo L et al (2017) New arylpyrazoline-coumarins: synthesis and anti-inflammatory activity. Eur J Med Chem 138:170–181. https://doi.org/10.1016/j.ejmech.2017.06.044

    Article  CAS  PubMed  Google Scholar 

  22. Pu W, Lin Y, Zhang J et al (2014) 3-Arylcoumarins: synthesis and potent anti-inflammatory activity. Bioorg Med Chem Lett 24:5432–5434. https://doi.org/10.1016/j.bmcl.2014.10.033

    Article  CAS  PubMed  Google Scholar 

  23. Akoudad S, Darweesh SKL, Leening MJG et al (2014) Use of coumarin anticoagulants and cerebral microbleeds in the general population. Stroke 45:3436–3439. https://doi.org/10.1161/STROKEAHA.114.007112

    Article  CAS  PubMed  Google Scholar 

  24. Olmedo D, Sancho R, Bedoya LM et al (2012) 3-Phenylcoumarins as inhibitors of HIV-1 replication. Molecules 17:9245–9257. https://doi.org/10.3390/molecules17089245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hassan MZ, Osman H, Ali MA, Ahsan MJ (2016) Therapeutic potential of coumarins as antiviral agents. Eur J Med Chem 123:236–255. https://doi.org/10.1016/j.ejmech.2016.07.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Emami S, Dadashpour S (2015) Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur J Med Chem 102:611–630. https://doi.org/10.1016/j.ejmech.2015.08.033

    Article  CAS  PubMed  Google Scholar 

  27. Keri RS, Sasidhar BS, Nagaraja BM, Santos MA (2015) Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents. Eur J Med Chem 100:257–269. https://doi.org/10.1016/j.ejmech.2015.06.017

    Article  CAS  PubMed  Google Scholar 

  28. Razavi SF, Khoobi M, Nadri H et al (2013) Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors. Eur J Med Chem 64:252–259. https://doi.org/10.1016/j.ejmech.2013.03.021

    Article  CAS  PubMed  Google Scholar 

  29. Anand P, Singh B, Singh N (2012) A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg Med Chem 20:1175–1180. https://doi.org/10.1016/j.bmc.2011.12.042

    Article  CAS  PubMed  Google Scholar 

  30. Bagheri SM, Khoobi M, Nadri H et al (2015) Synthesis and anticholinergic activity of 4-hydroxycoumarin derivatives containing substituted benzyl-1,2,3-triazole moiety. Chem Biol Drug Des 86:1215–1220. https://doi.org/10.1111/cbdd.12588

    Article  CAS  PubMed  Google Scholar 

  31. Detsi A, Kontogiorgis C, Hadjipavlou-Litina D (2017) Coumarin derivatives: an updated patent review (2015–2016). Expert Opin Ther Pat 27:1201–1226. https://doi.org/10.1080/13543776.2017.1360284

    Article  CAS  PubMed  Google Scholar 

  32. Moffett RB (1964) Central Nervous System Depressants. VII.1 pyridyl coumarins. J Med Chem 7:446–449. https://doi.org/10.1021/jm00334a010

    Article  CAS  PubMed  Google Scholar 

  33. Sreenivasulu B, Sundaramurthy V, Rao NVS (1974) Search for physiologically active compounds. Proc Indian Acad Sci 79:41–47. https://doi.org/10.1007/BF03051127

    Article  CAS  Google Scholar 

  34. Stefani HA, Gueogjan K, Manarin F et al (2012) Synthesis, biological evaluation and molecular docking studies of 3-(triazolyl)-coumarin derivatives: Effect on inducible nitric oxide synthase. Eur J Med Chem 58:117–127. https://doi.org/10.1016/j.ejmech.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  35. Zhang W, Li Z, Zhou M et al (2014) Synthesis and biological evaluation of 4-(1,2,3-triazol-1-yl)coumarin derivatives as potential antitumor agents. Bioorg Med Chem Lett 24:799–807. https://doi.org/10.1016/j.bmcl.2013.12.095

    Article  CAS  PubMed  Google Scholar 

  36. Shi Y, Zhou C-H (2011) Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents. Bioorg Med Chem Lett 21:956–960. https://doi.org/10.1016/j.bmcl.2010.12.059

    Article  CAS  PubMed  Google Scholar 

  37. Ostrowska K (2020) Coumarin-piperazine derivatives as biologically active compounds. Saudi Pharm J 28:220–232. https://doi.org/10.1016/j.jsps.2019.11.025

    Article  CAS  PubMed  Google Scholar 

  38. Wang S-F, Yin Y, Wu X et al (2014) Synthesis, molecular docking and biological evaluation of coumarin derivatives containing piperazine skeleton as potential antibacterial agents. Bioorg Med Chem 22:5727–5737. https://doi.org/10.1016/j.bmc.2014.09.048

    Article  CAS  PubMed  Google Scholar 

  39. Paul S, Sepay N, Sarkar S et al (2017) Interaction of serum albumins with fluorescent ligand 4-azido coumarin: spectroscopic analysis and molecular docking studies. New J Chem 41:15392–15404. https://doi.org/10.1039/C7NJ02335A

    Article  CAS  Google Scholar 

  40. Phillips AJ, Henderson JA, Jackson KL (2008) 7.07 - Pyrans and their benzo derivatives: structure and reactivity. In: Katritzky AR, Ramsden CA, Scriven EFV, Taylor RJK (eds) Comprehensive Heterocyclic Chemistry III. Elsevier, Oxford, pp 337–418

    Chapter  Google Scholar 

  41. Reißner T, Schneider S, Schorr S, Carell T (2010) Crystal structure of a Cisplatin–(1,3-GTG) cross-link within DNA polymerase η. Angew Chem Int Ed 49:3077–3080. https://doi.org/10.1002/anie.201000414

    Article  CAS  Google Scholar 

  42. Cimino GD, Gamper HB, Isaacs ST, Hearst JE (1985) Psoralens as photoactive probes of nucleic acid structure and function: organic chemistry, photochemistry, and biochemistry. Annu Rev Biochem 54:1151–1193. https://doi.org/10.1146/annurev.bi.54.070185.005443

    Article  CAS  PubMed  Google Scholar 

  43. Verga D, Nadai M, Doria F et al (2010) Photogeneration and reactivity of Naphthoquinone Methides as Purine selective DNA alkylating agents. J Am Chem Soc 132:14625–14637. https://doi.org/10.1021/ja1063857

    Article  CAS  PubMed  Google Scholar 

  44. Di Antonio M, Doria F, Richter SN et al (2009) Quinone Methides Tethered to Naphthalene Diimides as selective G-Quadruplex Alkylating Agents. J Am Chem Soc 131:13132–13141. https://doi.org/10.1021/ja904876q

    Article  CAS  PubMed  Google Scholar 

  45. Wang P, Liu R, Wu X et al (2003) A potent, Water-Soluble and Photoinducible DNA Cross-Linking Agent. J Am Chem Soc 125:1116–1117. https://doi.org/10.1021/ja029040o

    Article  CAS  PubMed  Google Scholar 

  46. Cao S, Wang Y, Peng X (2012) ROS-inducible DNA cross-linking agent as a new anticancer prodrug building block. Chemistry 18:3850–3854. https://doi.org/10.1002/chem.201200075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cao S, Christiansen R, Peng X (2013) Substituent Effects on Oxidation-Induced formation of Quinone Methides from Arylboronic Ester Precursors. Chem – Eur J 19:9050–9058. https://doi.org/10.1002/chem.201300539

    Article  CAS  PubMed  Google Scholar 

  48. Kuang Y, Balakrishnan K, Gandhi V, Peng X (2011) Hydrogen Peroxide Inducible DNA Cross-Linking Agents: targeted Anticancer Prodrugs. J Am Chem Soc 133:19278–19281. https://doi.org/10.1021/ja2073824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. García-Beltrán O, Cassels BK, Pérez C et al (2014) Coumarin-based fluorescent probes for dual recognition of copper(II) and iron(III) ions and their application in bio-imaging. Sens (Basel) 14:1358–1371. https://doi.org/10.3390/s140101358

    Article  CAS  Google Scholar 

  50. Yokel RA (2002) Brain uptake, retention, and efflux of aluminum and manganese. Environ Health Perspect 110:699–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yasui M, Kihira T, Ota K (1992) Calcium, magnesium and aluminum concentrations in Parkinson’s disease. Neurotoxicology 13:593–600

    CAS  PubMed  Google Scholar 

  52. Roy N (2016) A highly efficient and selective coumarin based fluorescent probe for colorimetric detection of Fe3 + and fluorescence dual sensing of Zn2 + and Cu2+.RSC Adv 6. https://doi.org/10.1039/C6RA12217E

  53. Karuk Elmas ŞN, Ozen F, Koran K et al (2017) Coumarin Based highly selective “off-on-off” type Novel fluorescent sensor for Cu2 + and S2 – in Aqueous Solution. J Fluoresc 27:463–471. https://doi.org/10.1007/s10895-016-1972-3

    Article  CAS  PubMed  Google Scholar 

  54. Savran T, Karagöz A, Karuk Elmas ŞN et al (2020) Fluorescent sensing platform for low-cost detection of Cu2 + by coumarin derivative: DFT calculation and practical application in herbal and black tea samples. Turk J Chem 44:1148–1163. https://doi.org/10.3906/kim-2004-63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Arslan FN, Geyik GA, Koran K et al (2020) Fluorescence “Turn On–Off” sensing of copper (II) ions utilizing coumarin–based Chemosensor: experimental study, theoretical calculation, Mineral and drinking Water Analysis. J Fluoresc 30:317–327. https://doi.org/10.1007/s10895-020-02503-4

    Article  CAS  PubMed  Google Scholar 

  56. Karaoglu K, Yilmaz F, Menteşe E (2017) A new fluorescent “Turn-Off” coumarin-based Chemosensor: synthesis, structure and Cu-Selective fluorescent sensing in Water samples. J Fluoresc 27:1293–1298. https://doi.org/10.1007/s10895-017-2062-x

    Article  CAS  PubMed  Google Scholar 

  57. Chang H-Q, Zhao X-L, Wu W-N et al (2017) A highly sensitive on-off fluorescent chemosensor for Cu2+ based on coumarin. J Lumin 182:268–273. https://doi.org/10.1016/j.jlumin.2016.10.041

    Article  CAS  Google Scholar 

  58. Wang Y, Wu H, Wu W-N et al (2018) An AIRE active Schiff base bearing coumarin and pyrrole unit: Cu2 + detection in either solution or aggregation states. Sens Actuators B 260:106–115. https://doi.org/10.1016/j.snb.2017.12.201

    Article  CAS  Google Scholar 

  59. Roy D, Chakraborty A, Ghosh R (2018) Coumarin based colorimetric and fluorescence on-off chemosensor for F–, CN – and Cu2 + ions. Spectrochim Acta Part A Mol Biomol Spectrosc 191:69–78. https://doi.org/10.1016/j.saa.2017.09.071

    Article  CAS  Google Scholar 

  60. Mergu N, Kim M, Son Y-A (2018) A coumarin-derived Cu2+-fluorescent chemosensor and its direct application in aqueous media. Spectrochim Acta A Mol Biomol Spectrosc 188:571–580. https://doi.org/10.1016/j.saa.2017.07.047

    Article  CAS  PubMed  Google Scholar 

  61. Xuan W, Chen C, Cao Y et al (2012) Rational design of a ratiometric fluorescent probe with a large emission shift for the facile detection of Hg2+. Chem Commun 48:7292–7294. https://doi.org/10.1039/C2CC32435K

    Article  CAS  Google Scholar 

  62. Li H, Sun X, Zheng T et al (2019) Coumarin-based multifunctional chemosensor for arginine/lysine and Cu2+/Al3 + ions and its Cu2 + complex as colorimetric and fluorescent sensor for biothiols. Sens Actuators B 279:400–409. https://doi.org/10.1016/j.snb.2018.10.017

    Article  CAS  Google Scholar 

  63. Zhao C, Chen J, Cao D et al (2019) Novel coumarin-based containing denrons selective fluorescent chemosesor for sequential recognition of Cu2 + and PPi. Tetrahedron 75:1997–2003. https://doi.org/10.1016/j.tet.2019.02.024

    Article  CAS  Google Scholar 

  64. He G, Ma N, Li L et al (2019) A coumarin-based fluorescence probe for selective recognition of Cu 2+ ions and live cell imaging. J Sens 2019:1–7. https://doi.org/10.1155/2019/2814947

    Article  CAS  Google Scholar 

  65. Akhila AK, Renuka NK (2019) Coumarin–graphene turn-on fluorescent probe for femtomolar level detection of copper(ii). New J Chem 43:1001–1008. https://doi.org/10.1039/C8NJ04732D

    Article  CAS  Google Scholar 

  66. Xie Y, Yan L, Li J (2019) An On–Off–On fluorescence probe based on coumarin for Cu 2+, cysteine, and histidine detections. Appl Spectrosc 73:794–800. https://doi.org/10.1177/0003702818821329

    Article  CAS  PubMed  Google Scholar 

  67. Wang Z-G, Wang Y, Ding X-J et al (2020) A highly selective colorimetric and fluorescent probe for quantitative detection of Cu2+/Co2+: the unique ON-OFF-ON fluorimetric detection strategy and applications in living cells/zebrafish. Spectrochim Acta Part A Mol Biomol Spectrosc 228:117763. https://doi.org/10.1016/j.saa.2019.117763

    Article  CAS  Google Scholar 

  68. Xu W, Han G, Ma P et al (2017) A highly selective turn-on fluorescent and chromogenic probe for CN – and its applications in imaging of living cells and zebrafish in vivo. Sens Actuators B. https://doi.org/10.1016/j.snb.2017.05.088. 251:

    Article  Google Scholar 

  69. You GR, Jang HJ, Jo TG, Kim C (2016) A novel displacement-type colorimetric chemosensor for the detection of Cu2 + and GSH in aqueous solution. RSC Adv 6:74400–74408. https://doi.org/10.1039/C6RA12368F

    Article  CAS  Google Scholar 

  70. Zhang J, Chen M-Y, Bai C-B et al (2020) A coumarin-based fluorescent probe for Ratiometric Detection of Cu2 + and its application in Bioimaging. Front Chem 8:800. https://doi.org/10.3389/fchem.2020.00800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jiang J, Zhang Y, Wei T et al (2022) Novel fluorescent chemosensor sensitively detect copper (II) through the collaboration of quinoline and coumarin groups. Appl Organom Chemis 36. https://doi.org/10.1002/aoc.6705

  72. Gao L-L, Wang B-B, Chen X et al (2021) Hydrazone derivative bearing coumarin for the relay detection of Cu2 + and H2S in an almost neat aqueous solution and bioimaging in lysosomes. Spectrochim Acta Part A Mol Biomol Spectrosc 255:119693. https://doi.org/10.1016/j.saa.2021.119693

    Article  CAS  Google Scholar 

  73. Wu W, Min S, Tong Q et al (2021) Highly sensitive and selective “turn-off” fluorescent probes based on coumarin for detection of Cu2+. Colloid and Interface Science Communications 43:100451. https://doi.org/10.1016/j.colcom.2021.100451

    Article  CAS  Google Scholar 

  74. Liu L, Guo C, Zhang Q et al (2022) A hydrazone dual-functional fluorescent probe based on carbazole and coumarin groups for the detection of Cu2 + and ClO–: application in live cell imaging and actual water samples. J Photochem Photobiol A 423:113593. https://doi.org/10.1016/j.jphotochem.2021.113593

    Article  CAS  Google Scholar 

  75. Srisuwan P, Sappasombut A, Thongyod W et al (2022) Highly sensitive and selective coumarin-based fluorescent chemosensor for Cu2 + detection. J Photochem Photobiol A 427:113841. https://doi.org/10.1016/j.jphotochem.2022.113841

    Article  CAS  Google Scholar 

  76. Isaad J, El Achari A (2022) Water-soluble coumarin based sequential colorimetric and fluorescence on-off chemosensor for copper(II) and cyanide ions in water. Opt Mater 127:112275. https://doi.org/10.1016/j.optmat.2022.112275

    Article  CAS  Google Scholar 

  77. Shi J, Wang M, Pang X et al (2023) A highly sensitive coumarin-based fluorescent probe for visual detection of Cu2 + in aqueous solution and its bioimaging in living cells. J Mol Struct 1281:135062. https://doi.org/10.1016/j.molstruc.2023.135062

    Article  CAS  Google Scholar 

  78. Yan M, Li T, Yang Z (2011) A novel coumarin Schiff-base as a zn(II) ion fluorescent sensor. Inorg Chem Commun 14:463–465. https://doi.org/10.1016/j.inoche.2010.12.027

    Article  CAS  Google Scholar 

  79. An J, Yan M, Yang Z et al (2013) A turn-on fluorescent sensor for Zn(II) based on fluorescein-coumarin conjugate. Dyes Pigm 99:1–5. https://doi.org/10.1016/j.dyepig.2013.04.018

    Article  CAS  Google Scholar 

  80. Roy N, Dutta A, Mondal P et al (2017) Coumarin Based fluorescent probe for colorimetric detection of Fe3 + and fluorescence turn On-Off response of Zn2 + and Cu2+. J Fluoresc 27:1307–1321. https://doi.org/10.1007/s10895-017-2065-7

    Article  CAS  PubMed  Google Scholar 

  81. Wang K-P, Jin Z-H, Shang H-S et al (2017) A highly selective fluorescent Chemosensor for Zn2 + based on the rhodamine derivative incorporating Coumarin Group. J Fluoresc 27:629–633. https://doi.org/10.1007/s10895-016-1991-0

    Article  CAS  PubMed  Google Scholar 

  82. Bhattacharyya A, Ghosh S, Makhal SC, Guchhait N (2017) Hydrazine bridged coumarin-pyrimidine conjugate as a highly selective and sensitive zn 2 + sensor: spectroscopic unraveling of sensing mechanism with practical application. Spectrochim Acta Part A Mol Biomol Spectrosc 183:306–311. https://doi.org/10.1016/j.saa.2017.04.035

    Article  CAS  Google Scholar 

  83. Wang L, Li W, Zhi W et al (2018) A new coumarin schiff based fluorescent-colorimetric chemosensor for dual monitoring of Zn2 + and Fe3 + in different solutions: an application to bio-imaging. Sens Actuators B 260:243–254. https://doi.org/10.1016/j.snb.2017.12.200

    Article  CAS  Google Scholar 

  84. Bhattacharyya A, Makhal SC, Guchhait N (2019) Evaluating the merit of a diethylamino coumarinderived thiosemicarbazone as an intramolecular charge transfer probe: efficient zn(II) mediated emission swing from green to yellow. Photochem Photobiol Sci 18:2031–2041. https://doi.org/10.1039/c9pp00108e

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A.M. acknowledges the SERB for research grant ref: EEQ/2019/000194. The Authors are appreciative to the Department of Chemistry as well as the Authority of Presidency University, Kolkata, India, for financial support through FRPDF grant. We kindly acknowledge for Elsevier publications for providing the permission to use the Figs. 9 and 21. We also acknowledge Hindawi for Fig. 11.

Funding

SERB for research grant ref: EEQ/2019/000194 and Presidency University for FRPDF grant

Author information

Authors and Affiliations

Authors

Contributions

Concept and design of this article is collective contribution of all authors. They all read and approve the final manuscript.

Corresponding authors

Correspondence to Anjoy Majhi or Palani Sasikumar‬‬‬‬.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interests

Authors do not have any competing interests including financial.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majhi, A., Venkateswarlu, K. & Sasikumar‬‬‬‬, P. Coumarin Based Fluorescent Probe for Detecting Heavy Metal Ions. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03372-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03372-3

Keywords

Navigation