Skip to main content
Log in

Phentroimidazole Based Fluorescence “Turn on” Sensor for Highly Sensitive Detection of Zn2+ Ions

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

FIH sensor-based fluorescence was fabricated and analyzed employing 1H, 13C-, APT-NMR, elemental analysis and ATR–FTIR spectroscopy. The fluorescence properties of the fabricated FIH sensor towards metal ions were investigated by fluorescence spectroscopy. It was determined that prepared sensor had the highest fluorescence sensitivity towards Zn2+ ions which was 35 times more than other metal ions (Ag+, Li+, Ba2+, Mg2+, Cu2+, Ni2+, Cr3+, Pb2+, Ca2+, Fe2+, Fe3+, Co2+, Hg2+, Cd2+, Rb2+, Cs2+, and Al3+) while it was being no effect for the commonly used metal ions. From the point of this view, it can be easily said that this system can be applied as fluorescence sensor for Zn2+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Malkondu S, Erdemir S (2014) A triphenylamine based multi-analyte chemosensor for Hg2+ and Cu2+ ions in MeCN/H2O. Tetrahedron 70:5494–5498. https://doi.org/10.1016/j.tet.2014.06.115

    Article  CAS  Google Scholar 

  2. Ding Y, Xie Y, Li X, Hill JP, Zhang W, Zhu W (2011) Selective and sensitive “turn-on” fluorescent Zn2+ sensors based on di- and tripyrrins with readily modulated emission wavelengths. Chem Commun 47:5431–5433. https://doi.org/10.1039/c1cc11493j

    Article  CAS  Google Scholar 

  3. Maity D, Govindaraju T (2012) A differentially selective sensor with fluorescence turn-on response to Zn 2+ and dual-mode ratiometric response to Al 3+ in aqueous media. Chem Commun 48:1039–1041. https://doi.org/10.1039/c1cc16064h

    Article  CAS  Google Scholar 

  4. K.P. Carter, A.M. Young, A.E. Palmer (2014) Fluorescent Sensors for Measuring Metal Ions in Living Systems Chem. Rev. 114(8):4564–4601. https://doi.org/10.1021/cr400546e

  5. Wu Z, Chen Q, Yang G, Xiao C, Liu J, Yang S, Ma JS (2004) Novel fluorescent sensor for Zn(II) based on bis(pyrrol-2-yl- methyleneamine) ligands. Sensors Actuators B Chem 99:511–515. https://doi.org/10.1016/j.snb.2003.12.070

    Article  CAS  Google Scholar 

  6. Gunnlaugsson T, Clive Lee T, Parkesh R (2003) A highly selective and sensitive fluorescent PET (photoinduced electron transfer) chemosensor for Zn(II). Org Biomol Chem 1:3265–3267. https://doi.org/10.1039/b309569j

    Article  CAS  PubMed  Google Scholar 

  7. Kim MS, Jo TG, Ahn HM, Kim C (2017) A colorimetric and fluorescent Chemosensor for the selective detection of Cu2+ and Zn2+ ions. J Fluoresc 27:357–367. https://doi.org/10.1007/s10895-016-1964-3

    Article  CAS  PubMed  Google Scholar 

  8. Raynal M, Ballester P, Vidal-ferran A, Van Leeuwen PWNM (n.d.) Supramolecular catalysis : a rapidly expanding and fascinating research:1–48. https://doi.org/10.1039/b000000x

  9. Aydin D (2020) A novel turn on fluorescent probe for the determination of Al3+ and Zn2+ ions and its cells applications. Talanta 210:120615. https://doi.org/10.1016/j.talanta.2019.120615

    Article  CAS  PubMed  Google Scholar 

  10. Erdemir S, Yuksekogul M, Karakurt S, Kocyigit O (2017) Dual-channel fluorescent probe based on bisphenol A-rhodamine for Zn2+ and Hg2+ through different signaling mechanisms and its bioimaging studies. Sensors Actuators B Chem 241:230–238. https://doi.org/10.1016/j.snb.2016.10.082

    Article  CAS  Google Scholar 

  11. Erdemir S, Kocyigit O (2017) A novel dye based on phenolphthalein-fluorescein as a fluorescent probe for the dual-channel detection of Hg2+ and Zn2+. Dyes Pigments 145:72–79. https://doi.org/10.1016/j.dyepig.2017.05.053

    Article  CAS  Google Scholar 

  12. Alici O, Erdemir S (2015) A cyanobiphenyl containing fluorescence “turn on” sensor for Al3+ ion in CH3CN-water. Sensors Actuators B Chem 208:159–163. https://doi.org/10.1016/j.snb.2014.11.033

    Article  CAS  Google Scholar 

  13. Kim JS, Noh KH, Lee SH, Kim SK, Kim SK, Yoon J (2003) Molecular taekwondo. 2. A new calix[4]azacrown bearing two different binding sites as a new fluorescent ionophore. J Org Chem 68:597–600. https://doi.org/10.1021/jo020538i

    Article  CAS  PubMed  Google Scholar 

  14. Kim JS, Shon OJ, Rim JA, Kim SK, Yoon J (2002) Pyrene-armed calix[4]azacrowns as new fluorescent ionophores: “molecular taekowndo” process via fluorescence change. J Organomet Chem 67:2348–2351. https://doi.org/10.1021/jo010877w

    Article  CAS  Google Scholar 

  15. Gunnlaugsson T, Lee TC, Parkesh R (2003) Cd(II) sensing in water using novel aromatic Iminodiacetate based fluorescent chemosensors. Org Lett 5:4065–4068. https://doi.org/10.1021/ol035484t

    Article  CAS  PubMed  Google Scholar 

  16. Han A, Liu X, Prestwich GD, Zang L (2014) Fluorescent sensor for Hg2+ detection in aqueous solution. Sensors Actuators B Chem 198:274–277. https://doi.org/10.1016/j.snb.2014.03.033

    Article  CAS  Google Scholar 

  17. Gupta VK, Jain AK, Kumar P, Agarwal S, Maheshwari G (2006) Chromium(III)-selective sensor based on tri-o-thymotide in PVC matrix. Sensors Actuators B Chem 113:182–186. https://doi.org/10.1016/j.snb.2005.02.046

    Article  CAS  Google Scholar 

  18. Gupta VK, Jain AK, Maheshwari G, Lang H, Ishtaiwi Z (2006) Copper(II)-selective potentiometric sensors based on porphyrins in PVC matrix. Sensors Actuators B Chem 117:99–106. https://doi.org/10.1016/j.snb.2005.11.003

    Article  CAS  Google Scholar 

  19. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707. https://doi.org/10.1021/ja01176a030

    Article  CAS  Google Scholar 

  20. Gupta VK, Jain AK, Kumar P (2006) PVC-based membranes of N,N′-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as Pb(II)-selective sensor. Sensors Actuators B Chem 120:259–265. https://doi.org/10.1016/j.snb.2006.02.019

    Article  CAS  Google Scholar 

  21. Roy N, Dutta A, Mondal P, Paul PC, Singh TS (2017) Coumarin Based Fluorescent Probe for Colorimetric Detection of Fe 3 + and Fluorescence Turn On-Off Response of Zn 2 + and Cu 2 +:1307–1321. https://doi.org/10.1007/s10895-017-2065-7

  22. Liu J, Meng X, Duan H, Xu T, Ding Z, Liu Y, Lucia L (2016) Sensors and actuators B : chemical two Schiff-base fluorescence probes based on triazole and benzotriazole for selective detection of Zn 2 +. Sensors Actuators B Chem 227:296–303. https://doi.org/10.1016/j.snb.2015.11.125

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meliha Kutluca Alici.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutluca Alici, M. Phentroimidazole Based Fluorescence “Turn on” Sensor for Highly Sensitive Detection of Zn2+ Ions. J Fluoresc 30, 269–273 (2020). https://doi.org/10.1007/s10895-020-02498-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02498-y

Keywords

Navigation