Skip to main content
Log in

A new 4-Amino-7-Nitro-2,1,3-Benzoxadiazole (ANBD)-Based Fluorescent Probe for the Detection of Hg2+

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Based on the photoinduced electron transfer (PET) principle, 4-amino-7-nitro-2,1,3-benzoxadiazole (ANBD) has been used as a fluorophore to develop a new fluorescent probe, 4-(2-N,N-dimethylthioacetamide)amino-7-nitro-2,1,3-benzoxadiazole (2), for the detection of Hg2+. Upon the addition of Hg2+, a 46-fold fluorescence enhancement occurs. Moreover the probe 2 exhibits a high selectivity and sensitivity to Hg2+, even in the presence of other common metal ions. Under optimal reaction conditions, a good linearity can be obtained in the range of 0.5–2.5 μM, and the detection limit is 0.05 μM. In addition, the desulfurization reaction mechanism is proposed based on electrospray ionization mass spectrum. The present study is not only a supplement to the detection method of Hg2+, but also a merit to the development of ANBD-based fluorescent probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

References

  1. Renzoni A, Zino F, Franchi E (1998) Mercury levels along the food chain and risk for exposed populations. Environ Res 77:68–72

    Article  CAS  PubMed  Google Scholar 

  2. Von Burg R, Greenwood MR (1991) Metals and their compounds in the environment. VCH, Weinheim, pp 1045–1088

    Google Scholar 

  3. Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351

    Article  CAS  PubMed  Google Scholar 

  4. Richardson SD, Temes TA (2005) Water analysis: emerging contaminants and current issues. Anal Chem 77:3807–3838

    Article  CAS  PubMed  Google Scholar 

  5. Takeuchi T, Morikawa N, Matsumoto H, Shiraishi Y (1962) A pathological study of Minamata disease in Japan. Acta Neuropathol 2:40–57

    Article  Google Scholar 

  6. Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25:1–24

    Article  CAS  PubMed  Google Scholar 

  7. Carvalho CML, Chew EH, Hashemy SI, Lu J, Holmgren A (2008) Inhibition of the human thioredoxin system-a molecular mechanism of mercury toxicity. J Biol Chem 283:11913–11923

    Article  CAS  PubMed  Google Scholar 

  8. Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury-current exposures and clinical manifestations. New Eng J Med 349:1731–1737

    Article  CAS  PubMed  Google Scholar 

  9. Shafawi A, Ebdon L, Foulkes M, Stockwell P, Corns W (1999) Determination of total mercury in hydrocarbons and natural gas condensate by atomic fluorescence spectrometry. Analyst 124:185–189

    Article  CAS  Google Scholar 

  10. Yamini Y, Alizadeh N, Shamsipur M (1997) Solid phase extraction and determination of ultra trace amounts of mercury(II) using octadecyl silica membrane disks modified by hexathia-18-crown-6-tetraone and cold vapour atomic absorption spectrometry. Anal Chim Acta 355:69–74

    Article  CAS  Google Scholar 

  11. Legrand M, Lam R, Jensen-Fontaine M, Salin ED, Chan HM (2004) Direct detection of mercury in single human hair strands by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J Anal At Spectrom 19:1287–1288

    Article  CAS  Google Scholar 

  12. Nolan EM, Lippard SJ (2008) Tools and tactics for the optical detection of mercuric ion. Chem Rev 108:3443–3480

    Article  CAS  PubMed  Google Scholar 

  13. Kim HN, Ren WX, Kim JS, Yoon J (2012) Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 41:3210–3244

    Article  CAS  PubMed  Google Scholar 

  14. Zheng H, Zhan XQ, Bian QN, Zhang XJ (2013) Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors. Chem Commun 49:429–447

    Article  CAS  Google Scholar 

  15. Mahato P, Saha S, Das P, Agarwalla H, Das A (2014) An overview of the recent developments on Hg2+ recognition. RSC Adv 4:36140–36174

    Article  CAS  Google Scholar 

  16. Hien NK, Bao NC, Nhung NTA, Trung NT, Nam PC, Duong T, Kim JS, Quang DT (2015) A highly sensitive fluorescent chemosensor for simultaneous determination of Ag(I), Hg(II), and Cu(II) ions: design, synthesis, characterization and application. Dyes Pigments 116:89–96

    Article  CAS  Google Scholar 

  17. Vengaian KM, Britto CD, Sekar K, Sivaramanb G, Singaravadivel S (2016) Phenothiazine-diaminomalenonitrile based colorimetric and fluorescence “turn-off-on” sensing of Hg2+ and S2−. Sensors Actuators B Chem 235:232–240

    Article  CAS  Google Scholar 

  18. Li D, Li CY, Li YF, Li Z, Xu F (2016) Rhodamine-based chemodosimeter for fluorescent determination of Hg2+ in 100% aqueous solution and in living cells. Anal Chim Acta 934:218–225

    Article  CAS  PubMed  Google Scholar 

  19. Saleem M, Rafiq M, Hanif M (2017) Organic material based fluorescent sensor for Hg2+: a brief review on recent development. J Fluoresc 27:31–58

    Article  CAS  PubMed  Google Scholar 

  20. Banthia S, Samanta A (2006) A new strategy for ratiometric fluorescence detection of transition metal ions. J Phys Chem B 110:6437–6440

    Article  CAS  PubMed  Google Scholar 

  21. Jiang W, Fu Q, Fan H, Wang W (2008) An NBD fluorophore-based sensitive and selective fluorescent probe for zinc ion. Chem Comm 259-261

  22. Qian F, Zhang C, Zhang Y, He W, Gao X, Hu P, Guo Z (2009) Visible light excitable Zn2+ fluorescent sensor derived from an intramolecular charge transfer fluorophore and its in vitro and in vivo application. J Am Chem Soc 131:1460–1468

    Article  CAS  PubMed  Google Scholar 

  23. Boiocchi M, Fabbrizzi L, Licchelli M, Sacchi D, Vázquezb M, Zampa C (2003) A two-channel molecular dosimeter for the optical detection of copper(II). Chem Commun:1812–1813

  24. Banthia S, Samanta A (2005) A two-dimensional chromogenic sensor as well as fluorescence inverter: selective detection of copper(II) in aqueous medium. New J Chem 29:1007–1010

    Article  CAS  Google Scholar 

  25. Liu SR, Wu SP (2011) An NBD-based sensitive and selective fluorescent sensor for copper(II) ion. J Fluoresc 21:1599–1605

    Article  CAS  PubMed  Google Scholar 

  26. Sakamoto H, Ishikawa J, Nakao S, Wada H (2000) Excellent mercury(II) ion selective fluoroionophore based on a 3,6,12,15-tetrathia-9-azaheptadecane derivative bearing a nitrobenzoxadiazolyl moiety. Chem Comm 2395–2396

  27. Kim SH, Kim JS, Park SM, Chang SK (2006) Hg2+-selective off-on and Cu2+-selective on-off type fluoroionophore based upon cyclam. Org Lett 8:371–374

    Article  CAS  PubMed  Google Scholar 

  28. Wanichacheva N, Siriprumpoonthum M, Kamkaew A, Grudpan K (2009) Dual optical detection of a novel selective mercury sensor based on 7-nitrobenzo-2-oxa-1,3-diazolyl subunits. Tetrahedron Lett 50:1783–1786

    Article  CAS  Google Scholar 

  29. Lee JE, Lee SS, Choi KS (2010) A chromo- and fluoroionophoric thiaoxaaza-macrocycle functionalized with nitrobenzofurazan exhibiting mercury (II) selectivity. Bull Kor Chem Soc 31:3707–3710

    Article  CAS  Google Scholar 

  30. Jeong HJ, Li Y, Hyun MH (2011) A fluorescent chemosensor based on 7-Nitrobenz-2-oxa-1,3-diazole (NBD) for the selective detection of hg(II). Bull Kor Chem Soc 32:2809–2812

    Article  Google Scholar 

  31. Ruan YB, Maisonneuve S, Xie J (2011) Highly selective fluorescent and colorimetric sensor for Hg2+ based on triazole-linked NBD. Dyes Pigments 90:239–244

    Article  CAS  Google Scholar 

  32. Xie Z, Wang K, Zhang C, Yang Z, Chen Y, Guo Z, Lu GY, He W (2011) A fluorometric/colorimetric dual-channel Hg2+ sensor derived from a 4-amino-7-nitro-benzoxadiazole (ANBD) fluorophore. New J Chem 35:607–613

    Article  CAS  Google Scholar 

  33. Wang K, Yang L, Zhao C, Ma H (2013) 4-(8-Quinolyl)amino-7-nitro-2,1,3- benzoxadiazole as a new colorimetric probe for rapid and visual detection of Hg2+. Spectrochim Acta A 105:29–33

    Article  CAS  Google Scholar 

  34. Kim JH, Noh JY, Hwang IH, Lee JJ, Kim C (2013) A NBD-based selective colorimetric and fluorescent chemosensor for Hg2+. Tetrahedron Lett 54:4001–4005

    Article  CAS  Google Scholar 

  35. Choi J, Lee SK, Bae J, Chang SK (2014) Colorimetric signaling of Hg2+ ions by a nitrobenzoxadiazole-appended cyclen-triester. Tetrahedron Lett 55:5294–5297

    Article  CAS  Google Scholar 

  36. Zhang Y, Chen H, Chen D, Wu D, Chen Z, Zhang J, Chen X, Liu S, Yin J (2016) A colorimetric and ratiometric fluorescent probe for mercury (II) inlysosome. Sensors Actuators B Chem 224:907–914

    Article  CAS  Google Scholar 

  37. Chae MY, Czarnik AW (1992) Fluorometric chemodosimetry. Mercury (II) and silver (I) indication in water via enhanced fluorescence signaling. J Am Chem Soc 114:9704–9705

    Article  CAS  Google Scholar 

  38. Song KC, Kim JS, Park SM, Chung KC, Ahn S, Chang SK (2006) Fluorogenic Hg2+-selective chemodosimeter derived from 8-hydroxyquinoline. Org Lett 8:3413–3416

    Article  CAS  PubMed  Google Scholar 

  39. Daly B, Ling J, de Silva AP (2015) Current developments in fluorescent PET (photoinduced electron transfer) sensors and switches. Chem Soc Rev 44:4203–4211

    Article  CAS  PubMed  Google Scholar 

  40. Huang J, Ma X, Liu B, Cai L, Li Q, Zhang Y, Jiang K, Yin S (2013) A colorimetric and ratiometric turn-on BODIPY-based fluorescent probe for double-channel detection of Cu2+ and Hg2+. J Lumin 141:130–136

    Article  CAS  Google Scholar 

  41. Coronado E, Galán-Mascarós JR, Martí-Gastaldo C, Palomares E, Durrant JR, Vilar R, Gratzel M, Nazeeruddin MK (2005) Reversible colorimetric probes for mercury sensing. J Am Chem Soc 127:12351–12356

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Natural Science Foundation of Hebei Province, China (No. B2013106116).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke Wang or Yongju Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Mao, X., Cao, L. et al. A new 4-Amino-7-Nitro-2,1,3-Benzoxadiazole (ANBD)-Based Fluorescent Probe for the Detection of Hg2+ . J Fluoresc 27, 1739–1745 (2017). https://doi.org/10.1007/s10895-017-2112-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2112-4

Keywords

Navigation