Skip to main content
Log in

The Magnetized Indirect Drive Project on the National Ignition Facility

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

A new project is underway at the National Ignition Facility with the goal of applying a seed magnetic field to the fusion fuel in an indirect drive hohlraum implosion and quantifying the effect on the hot-spot temperature, shape and neutron yield. Magnetizing fusion fuel is calculated to reduce heat loss from the implosion core by constraining the motion of electrons and fusion-generated alpha particles; this can improve the chances of achieving high-gain fusion in a laboratory plasma. We describe the goals of this project and the significant scientific and technological challenges which must be overcome for this project to succeed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availibility

The data that supports the findings of this study are available within the article [and its supplementary material].

References

  1. A.L. Kritcher, A.B. Zylstra, D.A. Callahan et al., Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E. Phys. Plasmas (2021). https://doi.org/10.1063/5.0047841

    Article  Google Scholar 

  2. A. Zylstra, O. Hurricane et al., Burning plasma achieved in inertial fusion. Nature 601, 542 (2022). https://doi.org/10.1038/s41586-021-04281-w

    Article  ADS  Google Scholar 

  3. A. Kritcher, C. Young, H. Robey et al., Design of inertial fusion implosions reaching the burning plasma regime. Nat. Phys. (2022). https://doi.org/10.1038/s41567-021-01485-9

    Article  Google Scholar 

  4. J.S. Ross, J.E. Ralph, A.B. Zylstra, A.L. Kritcher, H.F. Robey, C.V. Young, O.A. Hurricane, et al., Experiments conducted in the burning plasma regime with inertial fusion implosions. Nat. Commun. (2021)

  5. J.G. Linhart et al., Amplification of magnetic fields and heating of plasma by a collapsing metallic shell. Nucl. Fusion Suppl. 2, 733 (1962)

    Google Scholar 

  6. L.J. Perkins et al., The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion. Phys. Plasmas 24, 062708 (2017)

    Article  ADS  Google Scholar 

  7. J.D. Moody, Boosting inertial-confinement-fusion yield with magnetized fuel. Am. Phys. Soc. 14, 51 (2021). https://doi.org/10.1103/Physics.14.51

    Article  Google Scholar 

  8. J.D. Moody et al., Transient magnetic field diffusion considerations relevant to magnetically assisted indirect drive inertial confinement fusion. Phys. Plasmas 27, 112711 (2020)

    Article  ADS  Google Scholar 

  9. S.I. Braginskii, in Reviews of Plasma Physics, ed. by M.A. Leontovich, vol. 1 (Consultants Bureau, New York, 1965), p. 205

  10. J.D. Sadler, H. Li, K.A. Flippo, Parameter space for magnetization effects in high-energy-density plasmas. Matter Radiat. Extrem. 6, 0659902 (2021)

    Article  Google Scholar 

  11. B. Bigot, Nucl. Fusion (2019). https://doi.org/10.1088/1741-4326/ab0f84

    Article  Google Scholar 

  12. X. Yuhong, Matter Radiat. Extrem. 1, 192 (2016). https://doi.org/10.1016/j.mre.2016.07.001

    Article  Google Scholar 

  13. M.R. Gomez et al., Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion. Phys. Rev. Lett. 113, 155003 (2014)

    Article  ADS  Google Scholar 

  14. M.R. Gomez et al., Performance scaling in magnetized liner inertial fusion experiments. Phys. Rev. Lett. 125, 155002 (2020)

    Article  ADS  Google Scholar 

  15. D.H. Barnak, J.R. Davies, R. Betti, M.J. Bonino, E.M. Campbell, VYu. Glebov et al., Phys. Plasmas 24, 056310 (2017)

    Article  ADS  Google Scholar 

  16. J.R. Davies et al., Laser-driven magnetized liner inertial fusion. Phys. Plasmas 24, 062701 (2017)

    Article  ADS  Google Scholar 

  17. J.W. Mather, Phys. Fluids 8, 366 (1965)

    Article  ADS  Google Scholar 

  18. A. Schmidt, V. Tang, D. Welch, Phys. Rev. Lett. 109, 205003 (2012)

    Article  ADS  Google Scholar 

  19. U. Shumlak, J. Chadney, R.P. Golingo, D.J. Den Hartog, M.C. Hughes, S.D. Knecht, W. Lowrie, V.S. Lukin, B.A. Nelson, R.J. Oberto, J.L. Rohrbach, M.P. Ross, G.V. Vogman, The sheared-flow stabilized Z-pinch. Fusion Sci. Technol. 61(1T), 119–124 (2012). https://doi.org/10.13182/FST12-A13407

  20. I.R. Lindemuth, R.E. Siemon, Am. J. Phys. 77, 407 (2009). https://doi.org/10.1119/1.3096646

    Article  ADS  Google Scholar 

  21. J.D. Lawson, Some criteria for a useful thermonuclear reactor. Tech. Rep. GP/R 1807, Atomic Energy Research Establishment. https://www.euro-fusion.org/fileadmin/user_upload/Archive/wp-content/uploads/2012/10/dec05-aere-gpr1807.pdf (1955)

  22. J.D. Lawson, Proc. Phys. Soc. B 70, 6 (1957)

    Article  ADS  Google Scholar 

  23. R. Betti, P.Y. Chang, B.K. Spears, K.S. Anderson, J. Edwards, M. Fatenejad, J.D. Lindl, R.L. McCrory, R. Nora, D. Shvarts, Phys. Plasmas (2010). https://doi.org/10.1063/1.3380857

    Article  Google Scholar 

  24. P.Y. Chang, R. Betti, B.K. Spears, K.S. Anderson, J. Edwards, M. Fatenejad, J.D. Lindl, R.L. McCrory, R. Nora, D. Shvarts, Generalized measurable ignition criterion for inertial confinement fusion. Phys. Rev. Lett. (2010). https://doi.org/10.1103/PhysRevLett.104.135002

    Article  Google Scholar 

  25. O.A. Hurricane, S.A. Maclaren, M.D. Rosen, J.H. Hammer, P.T. Springer, R. Betti, Phys. Plasmas (2021). https://doi.org/10.1063/5.0035583

    Article  Google Scholar 

  26. S.E. Wurzel, S.C. Hsu, Progress toward fusion energy breakeven and gain as measured against the Lawson criterion. arXiv:2105.10954

  27. S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Oxford University Press, Oxford, 2004)

    Book  Google Scholar 

  28. B. Cheng, T.J.T. Kwan, Y.-M. Wang, S.H. Batha, On thermonuclear ignition criterion at the National Ignition Facility. Phys. Plasmas 21, 102707 (2014). https://doi.org/10.1063/1.4898734

    Article  ADS  Google Scholar 

  29. J.D. Lindl, Interital Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive (Springer, New York, 1998)

    Google Scholar 

  30. J. D. Lindl et al., The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11, 339 (2004)

  31. H.-S. Bosch, G.M. Hale, Improved formulas for fusion cross-sections and thermal reactivities. Nucl. Fusion 32, 611 (1992)

    Article  ADS  Google Scholar 

  32. O.A. Hurricane et al., Beyond alpha-heating: driving inertially confined fusion implosions toward a burning-plasma state on the National Ignition Facility. Plasma Phys. Control. Fusion 61, 014033 (2018)

    Article  ADS  Google Scholar 

  33. M. Hohenberger, P.-Y. Chang, G. Fiksel, J.P. Knauer, R. Betti, F.J. Marshall, D.D. Meyerhofer, F.H. Seǵuin, R.D. Petrasso, Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser. Phys. Plasmas (2012). https://doi.org/10.1063/1.3696032

    Article  Google Scholar 

  34. S. Le Pape, L.F. Berzak Hopkins, L. Divol, A. Pak, E.L. Dewald, S. Bhandarkar, L.R. Bennedetti, T. Bunn, J. Biener, J. Crippen et al., Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility. Phys. Rev. Lett. 120, 245003 (2018)

    Article  ADS  Google Scholar 

  35. D.D.-M. Ho, L.J. Perkins, G.B. Zimmerman, G. Kagan, J.D. Salmonson, B G. Logan, D.T. Blackfield, M.A. Rhodes, 58th Annual Meeting of the APS Division of Plasma Physics, CO8.00001 (2016)

  36. S. Yu. Gus’kov et al Sov. J. Quantum Electron. (1984)

  37. G. Zimmerman, W.L. Kruer, Numerical simulation of laser-initiated fusion. Comments Plasma Phys. Control. Fusion 2, 85 (1975)

    Google Scholar 

  38. J. Nuckolls, L. Wood, A. Thiessen, G.B. Zimmerman, Nature 239(5368), 139–142 (1972)

    Article  ADS  Google Scholar 

  39. D.D.-M. Ho, G.B. Zimmerman, A.L. Velikovich, R.M. Kulsrud, J.D. Moody, T. Woods, P.A. Amendt. 62nd Annual Meeting of the APS Division of Plasma Physics CO05.00011 (2020)

  40. R.P. Drake, J.H. Hammer, C.W. Hartman, L.J. Perkins, D.D. Ryutov, Submegajoule liner implosion of a closed field line configuration. Fusion Technol. 30, 310–325 (1996)

    Article  Google Scholar 

  41. I.R. Lindemuth et al., Magnetic-compression/magnetized-target fusion MAGO/MTF: a marriage of inertial and magnetic confinement. In: IAEA Conference Proceedings IAEA-CN-64/DP-27, 16th International Conference on Fusion Energy, Montreal, pp. 723–724 (1996)

  42. P.J. Turchi, Imploding liner compression of plasma: concepts and issues. IEEE Trans. Plasma Sci. 36, 52–61 (2008)

    Article  ADS  Google Scholar 

  43. L.J. Perkins, B.G. Logan, G.B. Zimmerman, C.J. Werner, Phys. Plasmas 20, 072708 (2013)

    Article  ADS  Google Scholar 

  44. S.A. Slutz et al., Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field. Phys. Plasmas 17, 056303 (2010)

    Article  ADS  Google Scholar 

  45. C.A. Walsh et al., Nucl. Fusion 60, 106006 (2020)

    Article  ADS  Google Scholar 

  46. C.A. Walsh, Magnetized ablative Rayleigh–Taylor instability in 3-D. Phys. Rev. E 105, 025206 (2022)

    Article  ADS  Google Scholar 

  47. O.V. Gotchev, P.Y. Chang, J.P. Knauer, D.D. Meyerhofer, O. Polomarov, J. Frenje, C.K. Li, M.J.-E. Manuel, R.D. Petrasso, J.R. Rygg, F.H. Séguin, R. Betti, Laser-driven magnetic-flux compression in high-energy-density plasmas. Phys. Rev. Lett. (2009). https://doi.org/10.1103/PhysRevLett.103.215004

    Article  Google Scholar 

  48. J.P. Knauer et al., Compressing magnetic fields with high-energy lasers. Phys. Plasmas 17, 056318 (2010)

    Article  ADS  Google Scholar 

  49. P.Y. Chang, G. Fiksel, M. Hohenberger, J.P. Knauer, R. Betti, F.J. Marshall, D.D. Meyerhofer, F.H. Séguin, R.D. Petrasso, Fusion yield enhancement in magnetized laser-driven implosions. Phys. Rev. Lett. (2011). https://doi.org/10.1103/PhysRevLett.107.035006

    Article  Google Scholar 

  50. A. Nishiguchi, T. Yabe, M.G. Haines, Nernst effect in laser-produced plasmas. Phys. Fluids 28, 3683 (1985)

    Article  ADS  Google Scholar 

  51. D.J. Strozzi, L.J. Perkins, M.M. Marinak, D.J. Larson, J.M. Koning, B.G. Logan, J. Plasma Phys. 81, 475810603 (2015)

    Article  Google Scholar 

  52. D.S. Montgomery, B.J. Albright, D.H. Barnak, P.Y. Chang, J.R. Davies, G. Fiksel, D.H. Froula, J.L. Kline, M.J. MacDonald, A.B. Sefkow, L. Yin, R. Betti, Use of external magnetic fields in Hohlraum plasmas to improve laser-coupling. Phys. Plasmas (2015). https://doi.org/10.1063/1.4906055

    Article  Google Scholar 

  53. P. Clark Souers, Hydrogen Properties for Fusion Energy, University of California Press, Berkeley, Chapters 16 and 17 (1986)

  54. J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), p. 199

    MATH  Google Scholar 

  55. S.W. Haan, J.D. Lindl, D.A. Callahan et al., Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys. Plasmas (2011). https://doi.org/10.1063/1.3592169

    Article  Google Scholar 

  56. COMSOL Multiphysicsl\(\text{\textregistered} \) v. 5.6. www.comsol.com. COMSOL AB, Stockholm

  57. D. Ho, Private Communication

  58. A. Engwall et al., U.S. Patent Application No. 62/928968 (October 31, 2019) Lawrence Livermore National Security, LLC, “High-resistivity metal alloy coatings fabricated with physical vapor deposition.”

  59. L.B. BayuAji, A.M. Engwall, J.H. Bae, A.A. Baker, J.L. Beckham, S.J. Shin, X. LeproChavez, S.K. McCall, J.D. Moody, S.O. Kucheyev, Sputtered Au-Ta films with tunable electrical resistivity. J. Phys. D 54, 075303 (2021)

    Article  ADS  Google Scholar 

  60. A.M. Engwall, L.B. BayuAji, A.A. Baker, S.J. Shin, J.H. Bae, S.K. McCall, J.D. Moody, S.O. Kucheyev, Effect of substrate tilt on sputter-deposited AuTa\(_4\) films. Appl. Surf. Sci. 547, 149010 (2021). https://doi.org/10.1016/j.apsusc.2021.149010

    Article  Google Scholar 

  61. J.H. Bae, L.B. Bayu Aji, S.J. Shin, A.M. Engwall, M.H. Nielsen, A.A. Baker, S.K. McCall, J.D. Moody, S.O. Kucheyev, Gold-tantalum alloy films deposited by high-density-plasma magnetron sputtering. J. Appl. Phys. 130, 165301 (2021)

    Article  ADS  Google Scholar 

  62. H. Sio et al., X-ray conversion efficiency of Au-Ta alloys. manuscript in preparation

  63. D.C. Eder, A.C. Fisher, A.E. Koniges, N.D. Masters, Modelling debris and shrapnel generation in inertial confinement fusion experiments. Nucl. Fusion 53, 113037 (2013)

    Article  ADS  Google Scholar 

  64. N. D. Masters, A. Fisher, D. Kalantar, J. Stölken, C. Smith, R. Vignes, S. Burns, T. Doeppner, A. Kritcher, H-S. Park, Debris and shrapnel assessments for National Ignition Facility targets and diagnostics. J. Phys.: Conference Series, Volume 717, 9th International Conference on Inertial Fusion Sciences and Applications (IFSA 2015) 20-25 September 2015, Seattle

  65. We approximate the current rise as a linear ramp to \(I_0\) in time \(t_0\) and specify the coil wire cross-sectional area \(A\), length \(L\) and resistivity \(\rho \). This gives a wire resistance of \(\rho L / A\) and total Ohmic heating energy of \(\displaystyle I_0^2 {t_0\over 3} {\rho \over A}\). This energy heats a wire mass proportional to the coil volume \(AL\). The temperature increase of the coil scales as \(\displaystyle \Delta T \sim I_0^2 {t_0 \over A^2}\). Given a fixed temperature increase to melt the radius of the wire is seen to scale as the fourth root of the current rise time, \(t_0\)

  66. Y. Sone, J. Phys. Soc. Jpn. 20, 222 (1965)

    Article  ADS  Google Scholar 

  67. A.L. Nichols, ALE-3D user’s manual, Technical Report No. UCRL-MA- 152204 (Lawrence Livermore National Laboratory, 2007)

  68. R.N. Rieben et al., An arbitrary Lagrangian–Eulerian discretization of MHD on 3D unstructured grids. J. Comput. Phys. 226(1), 534–570 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  69. S. Hahn et al., Nature 570, 496 (2019). https://doi.org/10.1038/s41586-019-1293-1

    Article  ADS  Google Scholar 

  70. H. Sio, J.D. Moody, D.D. Ho, B.B. Pollock, C.A. Walsh, B. Lahmann, D.J. Strozzi, G.E. Kemp, W.W. Hsing, A. Crilly, J.P. Chittenden, B. Appelbe, Rev. Sci. Instrum. (2021). https://doi.org/10.1063/5.0043381

    Article  Google Scholar 

  71. P.F. Schmit et al., Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion. Phys. Rev. Lett. 113, 155004 (2014)

    Article  ADS  Google Scholar 

  72. P.F. Knapp et al., Effects of magnetization on fusion product trapping and secondary neutron spectra. Phys. Plasmas 22, 056312 (2015)

    Article  ADS  Google Scholar 

  73. W.L. Kruer, S.C. Wilks, B.B. Afeyan, S. Kirkwood, K. Robert, Energy transfer between crossing laser beams. Phys. Plasmas 3, 382385 (1996)

    Article  Google Scholar 

  74. P. Michel et al., Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. Phys. Rev. Lett. 102, 025004 (2009)

    Article  ADS  Google Scholar 

  75. J.D. Moody et al., Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma. Nat. Phys. 8, 344 (2012)

    Article  Google Scholar 

  76. C.A. Thomas, E.M. Campbell, K.L. Baker, D.T. Casey, M. Hohenberger, A.L. Kritcher, B.K. Spears, S.F. Khan, R. Nora, D.T. Woods, J.L. Milovich, R.L. Berger, D. Strozzi, D.D. Ho, D. Clark, B. Bachmann, L.R. Benedetti, R. Bionta, P.M. Celliers, D.N. Fittinghoff, G. Grim, R. Hatarik, N. Izumi, G. Kyrala, T. Ma, M. Millot, S.R. Nagel, P.K. Patel, C. Yeamans, A. Nikroo, M. Tabak, M. Gatu Johnson, P.L. Volegov, S.M. Finnegan, Phys. Plasmas 27, 112–708 (2020). https://doi.org/10.1063/5.0019193

    Article  Google Scholar 

  77. K.L. Baker et al., High-performance indirect-drive cryogenic implosions at high adiabat on the National Ignition Facility. Phys. Rev. Lett. 121, 135001 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by the LLNL-LDRD program under Project Number 20-SI-002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Moody.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moody, J.D., Pollock, B.B., Sio, H. et al. The Magnetized Indirect Drive Project on the National Ignition Facility. J Fusion Energ 41, 7 (2022). https://doi.org/10.1007/s10894-022-00319-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10894-022-00319-7

Keywords

Navigation