Skip to main content

Advertisement

Log in

Advances in the Study of Liposomes Gel with Stimulus Responsiveness in Disease Treatment

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

With the extensive applications of nanomaterials in drug delivery in recent years, nanocarriers with composite polymers, represented by liposomal gels, have been studied for drug delivery for numerous diseases. The drug is loaded inside the liposomal gel and is endowed with specific temperature, pH, enzyme, light, electric field and other stimulating materials; further, the release of the loaded drug is controlled by specific stimuli. Liposomal gels provide better stability for drug formulation and obtaining higher targeting and stimulus responsiveness compared to single nano-drug-loaded materials. Hence, the toxic side effects of drugs can be effectively reduced and the drug delivery efficiency, therapeutic efficacy and safety can be considerably improved. At present, research on liposome gels as drug delivery carriers is still under developing stage, and their advantages as drug carriers will be more useful in practice and become a powerful tool for human beings to cure diseases in the future. In the future studies, the synthesis and stimuli-responsive mechanism of liposomal gels can be further explored to expand their applications in the field of disease treatment and provide more innovative solutions for precision medicine and individualised therapy. This review explores the application of liposome gels with stimuli-responsiveness as drug carriers for treating diseases, the advantages of liposome gels as drug carriers, the methods and principles of their fabrication, the stimuli-responsiveness of liposome gels for targeted release against diseases and its current challenges and opportunities to suggest certain methods and ideas for the development of smarter precision-targeted hybrid nanosystems in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. S. Rahni and S. Kazakov (2017). Gels 3 (1), 7. https://doi.org/10.3390/gels3010007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. K. Shoma Suresh, S. Bhat, B. R. Guru, M. S. Muttigi, and R. N. Seetharam (2020). Stem Cell Res. Ther. 11 (1), 205. https://doi.org/10.1186/s13287-020-01712-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. B. Begines, T. Ortiz, M. Pérez-Aranda, G. Martínez, M. Merinero, F. Argüelles-Arias, and A. Alcudia (2020). Nanomaterials 10 (7), 1403. https://doi.org/10.3390/nano10071403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Q. Zhang, G. Kuang, W. Li, J. Wang, H. Ren, and Y. Zhao (2023). Nano-Micro Lett. 15 (1), 44. https://doi.org/10.1007/s40820-023-01018-4.

    Article  ADS  CAS  Google Scholar 

  5. Duché, C. Heu and P. Thordarson. (2023). 6(16). https://doi.org/10.1021/acsanm. 3c02172

  6. K. Wu, B. Yu, D. Li, Y. Tian, Y. Liu, and J. Jiang (2022). Front. Oncol. 15 (12), 805978. https://doi.org/10.3389/fonc.2022.805978.

    Article  CAS  Google Scholar 

  7. Renukuntla J, Peterson-Sockwell S, Clark BA, Godage NH, Gionfriddo E, Bolla PK, Boddu SHS. (2023). Pharmaceutics. 15(4):1043. https://doi.org/10.3390/pharmaceutics15041043

  8. S. A. Özkan, A. Dedeoğlu, N. Karadaş Bakirhan, and Y. Özkan (2019). Turk. J. Pharm. Sci. 16 (4), 481.

    Article  PubMed  PubMed Central  Google Scholar 

  9. M. F. A. Khan, A. Ur Rehman, H. Howari, A. Alhodaib, F. Ullah, Z. U. Mustafa, A. Elaissari, and N. Ahmed (2022). Gels 8 (5), 277. https://doi.org/10.3390/gels8050277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A. Rana, M. Adhikary, P. K. Singh, B. C. Das, and S. Bhatnagar (2023). Front Chem. 10, 1095598. https://doi.org/10.3389/fchem.2022.1095598.

  11. J. Majumder and T. Minko (2021). Expert Opin. Drug Deliv. 18 (2), 205. https://doi.org/10.1080/17425247.2021.1828339.

    Article  CAS  PubMed  Google Scholar 

  12. P. Mi (2020). Theranostics 10 (10), 4557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. Pushpamalar, T. Sathasivam, and M. C. Gugler (2021). Methods Mol Biol. 2211, 171. https://doi.org/10.1007/978-1-0716-0943-9_12.

    Article  CAS  PubMed  Google Scholar 

  14. L. Van Gheluwe, I. Chourpa, C. Gaigne, and E. Munnier (2021). Polymers 13 (8), 1285. https://doi.org/10.3390/polym13081285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. S. H. Jang, Z. Yan, and J. A. Lazor (2016). Clin. Pharmacol. Ther. 99 (2), 148. https://doi.org/10.1002/cpt.298.

    Article  CAS  PubMed  Google Scholar 

  16. L. Tayo (2017). Biophys. Rev. 9 (6), 931. https://doi.org/10.1007/s12551-017-0341-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. K. Ahn, R. M. Kasi, S. C. Kim, N. Sharma, and Y. Zhou (2008). Soft Matter. 4 (6), 1151. https://doi.org/10.1039/b714376a.

    Article  ADS  CAS  PubMed  Google Scholar 

  18. S. Z. Alshawwa, A. A. Kassem, R. M. Farid, S. K. Mostafa, and G. S. Labib (2022). Pharmaceutics 14 (4), 883. https://doi.org/10.3390/pharmaceutics14040883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. A. Kauser, E. Parisini, G. Suarato, and R. Castagna (2023). Pharmaceutics 15 (8), 2106. https://doi.org/10.3390/pharmaceutics15082106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Pitorre, C. Gazaille, L. T. T. Pham, K. Frankova, J. Béjaud, N. Lautram, J. Riou, R. Perrot, F. Geneviève, V. Moal, J. P. Benoit, and G. Bastiat (2021). Mater. Sci. Eng. C 126, 112188. https://doi.org/10.1016/j.msec.2021.112188.

    Article  CAS  Google Scholar 

  21. S. Kumar and A. Bajaj (2020). Biomater. Sci. 8 (8), 2055. https://doi.org/10.1039/d0bm00146e.

    Article  CAS  PubMed  Google Scholar 

  22. S. R. Stefanov and V. Y. Andonova (2021). Pharmaceuticals (Basel) 14 (11), 1083. https://doi.org/10.3390/ph14111083.

    Article  CAS  PubMed  Google Scholar 

  23. B. Gupta, G. Sharma, P. Sharma, S. K. Sandhu, and I. P. Kaur (2022). Gels 8 (1), 58. https://doi.org/10.3390/gels8010058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. M. Mrinalini and S. Prasanthkumar (2019). Chempluschem 84 (8), 1103. https://doi.org/10.1002/cplu.201900365.

    Article  CAS  PubMed  Google Scholar 

  25. S. Municoy, M. I. Álvarezchazú, P. E. Antezana, J. M. Galdopórpora, C. Olivetti, A. M. Mebert, M. L. Foglia, M. V. Tuttolomondo, G. S. Alvarez, J. G. Hardy, and M. F. Desimone (2020). Int. J. Mol. 21 (13), 4724. https://doi.org/10.3390/ijms21134724.

    Article  CAS  Google Scholar 

  26. M. C. Nocito, A. De Luca, F. Prestia, P. Avena, D. La Padula, L. Zavaglia, R. Sirianni, I. Casaburi, F. Puoci, A. Chimento, and V. Pezzi (2021). Biomedicines 9 (10), 1476. https://doi.org/10.3390/biomedicines9101476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Y. Cao, X. Dong, and X. Chen (2022). Pharmaceutics 14 (4), 778. https://doi.org/10.3390/pharmaceutics14040778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. R. Moldovan, D. R. Mitrea, A. Florea, I. C. Chiş, Ş Suciu, L. David, B. E. Moldovan, L. E. Mureşan, M. Lenghel, R. A. Ungur, R. V. Opriş, N. Decea, and S. V. Clichici (2022). Antioxidants (Basel) 11 (7), 1343. https://doi.org/10.3390/antiox11071343.

    Article  CAS  PubMed  Google Scholar 

  29. M. Kumar, A. Tiwari, S. M. B. Asdaq, A. B. Nair, S. Bhatt, P. Shinu, A. K. Al Mouslem, S. Jacob, A. S. Alamri, W. F. Alsanie, M. Alhomrani, V. Tiwari, S. Devi, A. Pathania, and N. Sreeharsha (2022). Saudi J. Biol. Sci. 29 (1), 1. https://doi.org/10.1016/j.sjbs.2021.11.006.

    Article  CAS  PubMed  Google Scholar 

  30. Z. Y. Huang, Y. Q. Sun, H. Y. Hu, R. Zhuang, Q. Xu, and D. W. Chen (2016). Yao Xue Bao 51 (3), 356.

    CAS  Google Scholar 

  31. Y. Liu, W. He, Z. Zhang, and B. P. Lee (2018). Gels 4 (2), 46. https://doi.org/10.3390/gels4020046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. A. T. Iacob, F. G. Lupascu, M. Apotrosoaei, I. M. Vasincu, R. G. Tauser, D. Lupascu, S. E. Giusca, I. D. Caruntu, and L. Profire (2021). Pharmaceutics 13 (4), 587. https://doi.org/10.3390/pharmaceutics13040587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. R. F. El-Kased, R. I. Amer, D. Attia, and M. M. Elmazar (2017). Sci. Rep. 7 (1), 9692. https://doi.org/10.1038/s41598-017-08771-8.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  34. N. Oliva, J. Conde, K. Wang, and N. Artzi (2017). Acc. Chem. Res. 50 (4), 669. https://doi.org/10.1021/acs.accounts.6b00536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. A. Gupta, J. Lee, T. Ghosh, V. Q. Nguyen, A. Dey, B. Yoon, W. Um, and J. H. Park (2022). Pharmaceutics 14 (3), 540. https://doi.org/10.3390/pharmaceutics14030540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. N. A. Syed Azhar, S. E. Ashari, N. Zainuddin, and M. Hassan (2022). Molecules 27 (1), 289. https://doi.org/10.3390/molecules27010289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. C. Zeng, F. Yu, Y. Yang, X. Cheng, Y. Liu, H. Zhang, S. Zhao, Z. Yang, M. Li, Z. Li, and X. Mei (2016). PLoS ONE 11 (7), e0158517. https://doi.org/10.1371/journal.pone.0158517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. C. Qi, G. Liu, Y. Ping, K. Yang, Q. Tan, Y. Zhang, G. Chen, X. Huang, and D. Xu (2023). Food Chem. X 9 (17), 100571. https://doi.org/10.1016/j.fochx.2023.100571.

    Article  CAS  Google Scholar 

  39. D. Dhamecha, R. Movsas, U. Sano, and J. U. Menon (2019). Int. J. Pharm. 5 (569), 118627. https://doi.org/10.1016/j.ijpharm.2019.118627.

    Article  CAS  Google Scholar 

  40. M. Wallstén, Q. Yang, and P. Lundahl (1989). Biochim. Biophys. Acta 982 (1), 47. https://doi.org/10.1016/0005-2736(89)90172-7.

    Article  PubMed  Google Scholar 

  41. B. Wu, Y. Li, Y. Y. Li, Z. H. Shi, X. H. Bian, and Q. Xia (2022). Biomater. Appl. 36 (8), 1444. https://doi.org/10.1177/08853282211053923.

    Article  CAS  Google Scholar 

  42. N. Aanisah, S. Sulistiawati, Y. Y. Djabir, R. M. Asri, S. Sumarheni, L. Chabib, H. Hamzah, and A. D. Permana (2023). Langmuir 39 (5), 1838. https://doi.org/10.1021/acs.langmuir.2c02754.

    Article  CAS  PubMed  Google Scholar 

  43. N. Dudhipala and T. Gorre (2020). Pharmaceutics 12 (5), 448. https://doi.org/10.3390/pharmaceutics12050448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Q. Li, S. Gong, W. Yao, Y. Yu, C. Liu, R. Wang, H. Pan, and M. Wei (2021). Artif. Cells Nanomed. Biotechnol. 49 (1), 345. https://doi.org/10.1080/21691401.2021.1879104.

    Article  CAS  PubMed  Google Scholar 

  45. D. Li, X. Zhang, X. Chen, and W. Li (2022). Front. Bioeng. Biotechnol. 11 (10), 850366. https://doi.org/10.3389/fbioe.2022.850366.

    Article  Google Scholar 

  46. P. Cordeiro Lima Fernandes, L. David de Moura, F. Freitas de Lima, G. Henrique Rodrigues da Silva, R. Isaias Carvalho Souza, and E. de Paula (2021). Int. J. Pharm. 1 (602), 120675. https://doi.org/10.1016/j.ijpharm.2021.120675.

    Article  CAS  Google Scholar 

  47. M. Haider, S. M. Abdin, L. Kamal, and G. Orive (2020). Pharmaceutics 12, 288. https://doi.org/10.3390/pharmaceutics12030288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. B. E. B. Jensen, I. Dávila, and A. N. Zelikin (2016). Phys. Chem. B 120, 5916. https://doi.org/10.1021/acs.jpcb.6b01381.

    Article  CAS  Google Scholar 

  49. W.-F. Lai, R. Tang, and W.-T. Wong (2020). Pharmaceutics 12, 725. https://doi.org/10.3390/pharmaceutics12080725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. S. T. Sanjay, M. Dou, and G. Fu (2016). Curr. Pharm. Biotechnol. 17, 772. https://doi.org/10.2174/1389201017666160127110440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. M. Rincón, M. Silva-Abreu, and L. C. Espinoza (2021). Pharm. Basel Switz. 15, 22. https://doi.org/10.3390/ph15010022.

    Article  CAS  Google Scholar 

  52. B. Iqbal, J. Ali, and M. Ganguli (2019). Nanomedicine 14, 1077–1093. https://doi.org/10.2217/nnm-2018-0235.

    Article  PubMed  Google Scholar 

  53. M. Yang, Y. Gu, D. Yang, X. Tang, and J. Liu (2017). J. Nanobiotechnol. 15 (1), 88. https://doi.org/10.1186/s12951-017-0323-0.

    Article  CAS  Google Scholar 

  54. S. Rahni and S. Kazakov (2017). Gels Basel Switz. https://doi.org/10.3390/gels3010007.

    Article  Google Scholar 

  55. M. L. Immordino, F. Dosio, and L. Cattel (2006). Int. J. Nanomed. 1 (3), 297.

    CAS  Google Scholar 

  56. F. Ghiasi, M. H. Eskandari, M. T. Golmakani, R. G. Rubio, and F. Ortega (2021). J. Agric. For. Chem. 69 (8), 2585. https://doi.org/10.1021/acs.jafc.0c06680.

    Article  CAS  Google Scholar 

  57. I. P. Harrison and F. Spada (2018). Pharmaceutics 10 (2), 71. https://doi.org/10.3390/pharmaceutics10020071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. S. Ilić-Stojanović, M. Urošević, L. Nikolić, D. Petrović, J. Stanojević, S. Najman, and V. Nikolić (2020). Polymers (Basel) 12 (5), 1112. https://doi.org/10.3390/polym12051112.

    Article  CAS  PubMed  Google Scholar 

  59. Y. Liang and K. L. Kiick (2016). Biomacromolecules 17, 601–614. https://doi.org/10.1021/acs.biomac.5b01541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. C. Gazaille, M. Sicot, P. Saulnier, J. Eyer, and G. Bastiat (2021). Front. Med. Technol. 22 (3), 791596. https://doi.org/10.3389/fmedt.2021.791596.

    Article  Google Scholar 

  61. Y. Mou, P. Zhang, W. F. Lai, and D. Zhang (2022). Drug Deliv. 29 (1), 3245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. L. Li, L. Liang, H. Wu, and X. Zhu (2016). Nanoscale Res. Lett. 11 (1), 121. https://doi.org/10.1186/s11671-016-1320-1.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Y. Sekine, Y. Moritani, and T. Ikeda-Fukazawa (2012). Adv. Healthc. Mater. 1, 722–728. https://doi.org/10.1002/adhm.201200175.

    Article  CAS  PubMed  Google Scholar 

  64. W. Gao, Y. Zhang, Q. Zhang, and L. Zhang (2016). Ann. Biomed. Eng. 44 (6), 2049. https://doi.org/10.1007/s10439-016-1583-9.

    Article  PubMed  PubMed Central  Google Scholar 

  65. S. Al Harthi, S. E. Alavi, and M. A. Radwan (2019). Sci. Rep. 9, 9563. https://doi.org/10.1038/s41598-019-46032-y.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. C. F. Guimarães, R. Ahmed, and A. P. Marques (2021). Adv. Mater. Deerfield Beach Fla 33, e2006582. https://doi.org/10.1002/adma.202006582.

    Article  CAS  Google Scholar 

  67. K. Elkhoury, P. Koçak, A. Kang, E. Arab-Tehrany, J. Ellis Ward, and S. R. Shin (2020). Pharmaceutics 12 (9), 849. https://doi.org/10.3390/pharmaceutics12090849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Y. Kong, Y. Dai, D. Qi, W. Du, H. Ni, F. Zhang, H. Zhao, Q. Shen, M. Li, and Q. Fan (2021). ACS Appl. Biol. Mater. 4 (10), 7595. https://doi.org/10.1021/acsabm.1c00864.

    Article  CAS  Google Scholar 

  69. I. Neamtu, A. G. Rusu, A. Diaconu, L. E. Nita, and A. P. Chiriac (2017). Drug Deliv. 24 (1), 539. https://doi.org/10.1080/10717544.2016.1276232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Y. Wang, M. S. Shim, N. S. Levinson, H. W. Sung, and Y. Xia (2014). Adv. Funct. Mater. 24 (27), 4206. https://doi.org/10.1002/adfm.201400279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. S. Bhaladhare and S. Bhattacharjee (2023). Int. J. Biol. Macromol. 226, 535–553. https://doi.org/10.1016/j.ijbiomac.2022.12.076.

    Article  CAS  PubMed  Google Scholar 

  72. J. Bao, H. Tu, and J. Li (2022). Front. Bioeng. Biotechnol. 10, 991005. https://doi.org/10.3389/fbioe.2022.991005.

    Article  PubMed  PubMed Central  Google Scholar 

  73. J. Qiu, D. Huo, and Y. Xia (2020). Adv. Mater. Deerfield Beach Fla 32, e2000660. https://doi.org/10.1002/adma.202000660.

    Article  CAS  Google Scholar 

  74. R. Hamed, A. D. Abu Kwiak, Y. Al-Adhami, A. M. Hammad, R. Obaidat, O. H. Abusara, and R. A. Huwaij (2022). Pharmaceutics. 14 (9), 1975. https://doi.org/10.3390/pharmaceutics14091975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. N. Tavakoli, S. Taymouri, A. Saeidi, and V. Akbari (2019). Pharm. Dev. Technol. 24 (7), 891. https://doi.org/10.1080/10837450.2019.1616755.

    Article  CAS  PubMed  Google Scholar 

  76. S. Zhang, Y. Zhang, Z. Wang, T. Guo, X. Hou, Z. He, Z. He, L. Shen, and N. Feng (2020). Int. J. Pharm. 586, 119616. https://doi.org/10.1016/j.ijpharm.2020.119616.

    Article  CAS  PubMed  Google Scholar 

  77. Y. Huang, G. Sun, X. Sun, F. Li, L. Zhao, R. Zhong, and Y. Peng (2020). Cancers (Basel) 12 (11), 3332. https://doi.org/10.3390/cancers12113332.

    Article  CAS  PubMed  Google Scholar 

  78. E. Gallo, C. Diaferia, E. Rosa, G. Smaldone, G. Morelli, and A. Accardo (2021). Int. J. Nanomed. 1 (16), 1617. https://doi.org/10.2147/IJN.S296272.

    Article  Google Scholar 

  79. A. Ortega, A. B. da Silva, L. M. da Costa, K. C. Zatta, G. R. Onzi, F. N. da Fonseca, S. S. Guterres, and K. Paese (2023). Drug Deliv. Transl. Res. 13 (2), 642. https://doi.org/10.1007/s13346-022-01227-1.

    Article  CAS  PubMed  Google Scholar 

  80. Z. Zhang, Y. Pan, Y. Zhao, M. Ren, Y. Li, G. Lu, K. Wu, and S. He (2021). Int J Pharm. 2021 (606), 120871. https://doi.org/10.1016/j.ijpharm.2021.120871.

    Article  CAS  Google Scholar 

  81. G. Tan, S. Yu, J. Li, and W. Pan (2017). Int. J. Biol. Macromol. 103, 941–947. https://doi.org/10.1016/j.ijbiomac.2017.05.132.

    Article  CAS  PubMed  Google Scholar 

  82. G. M. F. Calixto, B. V. Muniz, S. R. Castro, J. S. M. de Araujo, K. de Souza Amorim, L. N. M. Ribeiro, L. E. N. Ferreira, D. R. de Araújo, E. de Paula, and M. Franz-Montan (2021). Pharmaceutics 13 (11), 1760. https://doi.org/10.3390/pharmaceutics13111760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. R. M. Pinto, D. Lopes-de-Campos, M. C. L. Martins, P. Van Dijck, C. Nunes, and S. Reis (2019). FEMS Microbiol. Rev. 43 (6), 622. https://doi.org/10.1093/femsre/fuz021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. S. Wu, G. Liu, P. Shao, X. Lin, J. Yu, H. Chen, H. Li, and S. Feng (2023). Adv Healthc Mater. https://doi.org/10.1002/adhm.202301933.

    Article  PubMed  Google Scholar 

  85. Sulistiawati, K. Saka Dwipayanti, M. Azhar, L. Rahman, E. Pakki, A. Himawan, and A. D. Permana (2022). Int. J. Pharm. 628, 122327. https://doi.org/10.1016/j.ijpharm.2022.122327.

    Article  CAS  PubMed  Google Scholar 

  86. H. Yang, Y. Ding, Z. Tong, X. Qian, H. Xu, F. Lin, G. Sheng, L. Hong, W. Wang, and Z. Mao (2022). Theranostics 12 (9), 4250. https://doi.org/10.7150/thno.68996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. A. Torres-Martínez, C. A. Angulo-Pachón, F. Galindo, and J. F. Miravet (2019). Langmuir ACS J. Surf. Colloids 35, 13375. https://doi.org/10.1021/acs.langmuir.9b02282.

    Article  CAS  Google Scholar 

  88. X. Hou, T. Zaks, R. Langer, and Y. Dong (2021). Nat. Rev. Mater. 6 (12), 10781094.

    Article  Google Scholar 

  89. Y. Hirai, R. Saeki, F. Song, H. Koide, N. Fukata, K. Tomita, N. Maeda, N. Oku, and T. Asai (2020). Int. J. Pharm. 30 (585), 119479. https://doi.org/10.1016/j.ijpharm.2020.119479.

    Article  CAS  Google Scholar 

  90. D. Li, G. Tang, H. Yao, Y. Zhu, C. Shi, Q. Fu, F. Yang, and X. Wang (2022). Bioact. Mater. 24 (16), 47. https://doi.org/10.1016/j.bioactmat.2022.02.018.

    Article  CAS  Google Scholar 

  91. T. X. Zong, A. P. Silveira, J. A. V. Morais, M. C. Sampaio, L. A. Muehlmann, J. Zhang, C. S. Jiang, and S. K. Liu (2022). Nanomaterials (Basel) 12 (11), 1855. https://doi.org/10.3390/nano12111855.

    Article  CAS  PubMed  Google Scholar 

  92. D. Hassan, C. A. Omolo, V. O. Fasiku, C. Mocktar, and T. Govender (2020). Int. J. Biol. Macromol. 15 (147), 385. https://doi.org/10.1016/j.ijbiomac.2020.01.019.

    Article  CAS  Google Scholar 

  93. S. Maghrebi, N. Thomas, C. A. Prestidge, and P. Joyce (2023). Drug Deliv. Transl. Res. 13 (6), 1716. https://doi.org/10.1007/s13346-022-01287-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. S. Das and A. B. H. Wong (2020). Stabilization of ferulic acid in topical gel formulation via nanoencapsulation and pH optimization. Sci. Rep. 10, 12288. https://doi.org/10.1038/s41598-020-68732-6.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. A. Czajkowska-Kośnik, E. Szymańska, and K. Winnicka (2022). Mol. Basel Switz 28, 235. https://doi.org/10.3390/molecules28010235.

    Article  CAS  Google Scholar 

  96. S. R. S. Veloso, R. G. D. Andrade, and E. M. S. Castanheira (2021). Adv. Colloid Interface Sci. 288, 102351. https://doi.org/10.1016/j.cis.2020.102351.

    Article  CAS  PubMed  Google Scholar 

  97. S. R. S. Veloso, E. Tiryaki, C. Spuch, L. Hilliou, C. O. Amorim, V. S. Amaral, P. J. G. Coutinho, P. M. T. Ferreira, V. Salgueiriño, M. A. Correa-Duarte, and E. M. S. Castanheira (2022). Nanoscale 14 (14), 5488. https://doi.org/10.1039/d1nr08158f.

    Article  CAS  PubMed  Google Scholar 

  98. S. D. Kong, M. Sartor, C. M. Hu, W. Zhang, L. Zhang, and S. Jin (2013). Acta Biomater. 9 (3), 5447. https://doi.org/10.1016/j.actbio.2012.11.006.

    Article  CAS  PubMed  Google Scholar 

  99. J. Hanuš, M. Ullrich, J. Dohnal, M. Singh, and F. Stěpánek (2013). Langmuir 29 (13), 4381–4387. https://doi.org/10.1021/la4000318.

    Article  CAS  PubMed  Google Scholar 

  100. E. Cazares-Cortes, A. Espinosa, J. M. Guigner, A. Michel, N. Griffete, C. Wilhelm, and C. Ménager (2017). ACS Appl. Mater. Interfaces 9 (31), 25775. https://doi.org/10.1021/acsami.7b06553.

    Article  CAS  PubMed  Google Scholar 

  101. H. Bi, S. Ma, Q. Li, and X. Han (2016). J. Mater. Chem. B 4, 3269–3277. https://doi.org/10.1039/c5tb02464a.

    Article  CAS  PubMed  Google Scholar 

  102. M. Rincón, M. Silva-Abreu, L. C. Espinoza, L. Sosa, A. C. Calpena, M. J. Rodríguez-Lagunas, and H. Colom (2021). Pharmaceuticals (Basel) 15 (1), 22. https://doi.org/10.3390/ph15010022.

    Article  CAS  PubMed  Google Scholar 

  103. J. Hahn, D. Kienhöfer, and J. Stoof (2017). Free Radic. Biol. Med. 108, S17. https://doi.org/10.1016/j.freeradbiomed.2017.04.084.

    Article  Google Scholar 

  104. H. Wang, X. Wang, P. Li, M. Dong, S. Q. Yao, and B. Tang (2021). Chem. Sci. 12 (35), 11620. https://doi.org/10.1039/d1sc02165f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. J. Liang and B. Liu (2016). Bioeng. Transl. Med. 1, 239–251. https://doi.org/10.1002/btm2.10014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Y. Zhu, J. Jia, G. Zhao, X. Huang, L. Wang, Y. Zhang, L. Zhang, N. Konduru, J. Xie, R. Yu, and H. Liu (2021). J. Nanobiotechnol. 19 (1), 198. https://doi.org/10.1186/s12951-021-00943-z.

    Article  CAS  Google Scholar 

  107. A. Rani, L. M. De Leon-Rodriguez, I. Kavianinia, D. J. McGillivray, D. E. Williams, and M. A. Brimble (2021). Org. Biomol. Chem. 19 (16), 3665. https://doi.org/10.1039/d1ob00355k.

    Article  CAS  PubMed  Google Scholar 

  108. D. Lyu, S. Chen, and W. Guo (2018). Small Weinh. Bergstr. Ger. 14, e1704039. https://doi.org/10.1002/smll.201704039.

    Article  CAS  Google Scholar 

  109. R. P. Singh and R. Agarwal (2002). Antioxid. Redox. Signal 4 (4), 655. https://doi.org/10.1089/15230860260220166.

    Article  CAS  PubMed  Google Scholar 

  110. L. Zhou, M. Zou, Y. Xu, P. Lin, C. Lei, and X. Xia (2022). Front. Oncol. 19 (12), 864301. https://doi.org/10.3389/fonc.2022.864301.

    Article  CAS  Google Scholar 

  111. X. Cong, J. Chen, and R. Xu (2022). Front. Bioeng. Biotechnol. 10, 916952. https://doi.org/10.3389/fbioe.2022.916952.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Y. Zhou, H. Wen, L. Gu, J. Fu, J. Guo, L. Du, X. Zhou, X. Yu, Y. Huang, and H. Wang (2017). J. Nanobiotechnol. 15 (1), 87. https://doi.org/10.1186/s12951-017-0316-z.

    Article  CAS  Google Scholar 

  113. J. Ma, H. Deng, F. Zhao, L. Deng, W. Wang, A. Dong, and J. Zhang (2018). Macromol. Biosci. 18 (7), e1800049. https://doi.org/10.1002/mabi.201800049.

    Article  CAS  PubMed  Google Scholar 

  114. L. Tang, J. Li, Q. Zhao, T. Pan, H. Zhong, and W. Wang (2023). Pharmaceutics 13 (8), 1151.

    Article  Google Scholar 

  115. J. Chen, M. Wu, and H. Veroniaina (2019). Polym. Chem. 10, 4031–4041. https://doi.org/10.1039/C9PY00537D.

    Article  CAS  Google Scholar 

  116. M. Fathi, A. Safary, and J. Barar (2020). Bioimpacts 10, 1–4. https://doi.org/10.15171/bi.2020.01.

    Article  CAS  PubMed  Google Scholar 

  117. J. Tao, P. Yang, M. Gao, F. Zhang, Y. Wu, Y. Jiang, Y. Ning, Z. Li, and F. Ai (2023). Mater. Today Biol. 31 (20), 100622. https://doi.org/10.1016/j.mtbio.2023.100622.

    Article  CAS  Google Scholar 

  118. D. Lyu , S. Chen, and W. Guo (2018). Small Weinh Bergstr Ger, 14.

  119. R. Ravanfar, G. B. Celli, and A. Abbaspourrad (2018). ACS Appl. Mater. Interfaces 10, 6046–6053. https://doi.org/10.1021/acsami.7b18795.

    Article  CAS  PubMed  Google Scholar 

  120. X. Fan, S. Wang, and S. Zhang (2019). J. Mater. Sci. 54, 6971. https://doi.org/10.1007/s10853-019-03360-8.

    Article  ADS  CAS  Google Scholar 

  121. M. Jeddi and M. Yazdani (2021). J. Compos. Mater. 55, 2151. https://doi.org/10.1177/0021998320984247.

    Article  ADS  CAS  Google Scholar 

  122. M. R. Maurya, S. Gupta, J. Y. Li, N. E. Ajami, Z. B. Chen, J. Y. Shyy, S. Chien, and S. Subramaniam (2021). Proc. Natl. Acad. Sci. USA 118 (4), e2023236118. https://doi.org/10.1073/pnas.2023236118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Y. Lei, X. Wang, J. Liao, et al. (2022). Shear-responsive boundary-lubricated hydrogels attenuate osteoarthritis. Bioact. Mater. 16, 472–484. https://doi.org/10.1016/j.bioactmat.2022.02.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. C. Y. Liu, H. L. Chen, H. J. Zhou, S. M. Yu, W. H. Yao, N. Wang, A. H. Lu, and W. H. Qiao (2022). Biomater. Adv. 134, 112558. https://doi.org/10.1016/j.msec.2021.112558.

    Article  CAS  PubMed  Google Scholar 

  125. Y. Yu, R. Feng, S. Yu, J. Li, Y. Wang, Y. Song, X. Yang, W. Pan, and S. Li (2018). Int. J. Biol. Macromol. 15 (114), 462. https://doi.org/10.1016/j.ijbiomac.2018.03.117.

    Article  CAS  Google Scholar 

  126. S. Yu, X. Zhang, G. Tan, L. Tian, D. Liu, Y. Liu, X. Yang, and W. Pan (2017). Carbohydr. Polym. 2 (155), 208. https://doi.org/10.1016/j.carbpol.2016.08.073.

    Article  CAS  Google Scholar 

  127. L. L. Palmese, M. Fan, R. A. Scott, H. Tan, and K. L. Kiick (2021). J. Biomater. Sci. Polym. Ed. 32 (5), 635. https://doi.org/10.1080/09205063.2020.1855392.

    Article  CAS  PubMed  Google Scholar 

  128. J. Sharifi-Rad, C. Quispe, M. Butnariu, L. S. Rotariu, O. Sytar, S. Sestito, S. Rapposelli, M. Akram, M. Iqbal, A. Krishna, N. V. A. Kumar, S. S. Braga, S. M. Cardoso, K. Jafernik, H. Ekiert, N. Cruz-Martins, A. Szopa, M. Villagran, L. Mardones, M. Martorell, A. O. Docea, and D. Calina (2021). Cancer Cell Int. 21 (1), 318. https://doi.org/10.1186/s12935-021-02025-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sriwidodo, A. K. Umar, N. Wathoni, J. H. Zothantluanga, S. Das, and J. A. Luckanagul (2022). Heliyon. https://doi.org/10.1016/j.heliyon.2022.e08934.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the editor and reviewers of this manuscript for providing excellent suggestions for the improvement of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This overview was supported by the Young Scientists Fund of the National Natural Science Foundation of China (82104403), Yunnan Province Clinical Medical Research Center for Elderly Diseases (202102AA310069), Yunnan Province Natural Science Foundation Project (202101AT070274), Dong Birong Expert Workstation (202105AF150032)

Author information

Authors and Affiliations

Authors

Contributions

BS and JW were corresponding authors who contributed to the study's conception, design, and revision; QY prepared the manuscript and wrote the major part of the manuscript; SL participated in some of the manuscript writing and literature collection; TS was responsible for reviewing the literature and collecting relevant materials; HZ and RC helped to revise the manuscript. All authors approved the final version of this manuscript.

Corresponding authors

Correspondence to Bo Song or Junzi Wu.

Ethics declarations

Conflict of interest

The authors declare that the research was con-ducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Consent to Publish

The Author agrees to publication in Journal of Cluster Science by Springer's English-language journal

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Luo, S., Tong, S. et al. Advances in the Study of Liposomes Gel with Stimulus Responsiveness in Disease Treatment. J Clust Sci 35, 701–714 (2024). https://doi.org/10.1007/s10876-023-02510-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02510-y

Keywords

Navigation