Skip to main content
Log in

A Novel Copper Oxide Nanoparticle Conjugated by Thiosemicarbazone Promote Apoptosis in Human Breast Cancer Cell Line

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The current study highlights the apoptotic activity of copper oxide (CuO) nanoparticles functionalized by Glutamic acid and conjugated by thiosemicarbazone (TSC) toward human breast cancer (MCF-7) and normal (HEK293) cell lines. To this aim, the co-precipitation method was used for preparation the CuO nanoparticles. Afterward, the CuO nanoparticles functionalized by glutamic acid. After that the functionalized copper oxide nanoparticles (CuO@Glu) conjugated to thiosemicarbazone. In next step, the final nanoparticle product (CuO@Glu/TSC) was characterized by physico-chemical techniques including Fourier transform infrared (FT-IR) spectroscopy, Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Energy dispersive X-ray analysis (EDX), zeta potential analysis and dynamic light scattering (DLS). The effects of in vitro cell viability in CuO@Glu/TSC nanoparticles showed the anti-proliferative properties with a dose-dependent manner (IC50 = 133.97 µg/ml). The IC50 of CuO@Glu/TSC on normal cell line was 230.2 µg/ml. This IC50 deference shows high cytotoxicity of CuO@Glu/TSC nanoparticles on tumor cells and low cytotoxicity on non-tumorigenic cells (HEK293) and is considered as an important aspect for this nanoparticles. Also, CuO@Glu/TSC nanoparticles had efficient effects in inhibiting the growth of breast cancer cell line (MCF-7). In addition, the CuO@Glu/TSC nanoparticle induced apoptosis symptoms which were assessed by Caspase-3 activation assay, Annexin V/ propidium iodide flow cytometry, and Hoechst 33258 staining. Further, Bax and Bcl-2 genes expression was estimated by real time PCR. The expression of Bax increased 1.69 fold, while the expression of Bcl-2 decreased 0.6 fold. The results of the current study propose that CuO@Glu/TSC nanoparticles reveal effective anti-cancer activity against breast cancer cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. M. Saravanan, H. Vahidi, D. M. Cruz, A. Vernet-Crua, E. Mostafavi, R. Stelmach, T. J. Webster, et al. (2020). Int J Nanomed. https://doi.org/10.2147/IJN.S240293.

    Article  Google Scholar 

  2. M. Saravanan, H. Barabadi, H. Vahidi, T. J. Webster, D. Medina-Cruz, E. Mostafavi, A. Vernet-Crua, et al. (2021). Handb Nanobiomater Ther Diagnostic Appl. https://doi.org/10.1016/B978-0-12-821013-0.00004-0.

    Article  Google Scholar 

  3. P. S. Kumar and P. Umadevi (2018). Russ. J. Gen. Chem. 1, 100. https://doi.org/10.3390/ph13060111.

    Article  CAS  Google Scholar 

  4. H. Muğlu, M. S. Çavuş, T. Bakır, and H. Yakan (2019). J Mol Struct. https://doi.org/10.1016/j.molstruc.2019.07.002.

    Article  Google Scholar 

  5. M. D. Altıntop, Ö. Atlı, S. Ilgın, R. Demirel, A. Özdemir, and Z. A. Kaplancıklı (2016). Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2015.11.041.

    Article  PubMed  Google Scholar 

  6. A. Nejabatdoust, H. Zamani, and A. Salehzadeh (2019). Microb Drug Resist. https://doi.org/10.1089/mdr.2018.0304.

    Article  PubMed  Google Scholar 

  7. C. Balachandran, J. Haribabu, K. Jeyalakshmi, N. S. Bhuvanesh, R. Karvembu, N. Emi, and S. Awale (2018). J Inorg Biochem. https://doi.org/10.1016/j.jinorgbio.2018.02.014.

    Article  PubMed  Google Scholar 

  8. M. Li-Weber (2009). Cancer Treat Rev. https://doi.org/10.1016/j.ctrv.2008.09.005.

    Article  PubMed  Google Scholar 

  9. F. N. Akladios, S. D. Andrew, and C. J. Parkinson (2016). J Biol Inorg Chem. https://doi.org/10.1007/s00775-016-1390-7.

    Article  PubMed  Google Scholar 

  10. E. l. Metwally, N. M. R. Arafa, and U. El-Ayaan (2014). J. Therm. Anal. Calorim. https://doi.org/10.1007/s10973-013-3065-8

  11. A. Gupte and R. J. Mumper (2009). Cnacer Treat Rev. https://doi.org/10.1016/j.ctrv.2008.07.004.

    Article  Google Scholar 

  12. J. Wang, M. Sui, and W. Fan (2010). Curr Drug Metab. https://doi.org/10.2174/138920010791110827.

    Article  PubMed  PubMed Central  Google Scholar 

  13. A. Rahnama and M. Gharagozlou (2012). Opt Quant Electron. https://doi.org/10.1007/s11082-011-9540-1.

    Article  Google Scholar 

  14. N. Abbaszadeh, N. Jaahbin, A. Pouraei, F. Mehraban, M. Hedayati, A. Majlesi, F. Akbari, et al (2021). J Clust Sci. https://doi.org/10.1007/s10876-021-01995-9

    Article  Google Scholar 

  15. T. T. Bamgboye and O. A. Bamgboye (1985). Inorg. Chim. Acta 105, 223.

    Article  CAS  Google Scholar 

  16. S. A. S. Shandiz, A. Montazeri, M. Abdolhosseini, S. H. Shahrestani, M. Hedayati, Z. Moradi-Shoeili, and A. Salehzadeh (2018). J Clust Sci. https://doi.org/10.1007/s10876-018-1424-0.

    Article  Google Scholar 

  17. B. Dutta, E. Kar, N. Bose, and S. Mukherjee (2015). RSC Adv. https://doi.org/10.1039/C5RA21903E.

    Article  Google Scholar 

  18. E. Joseph and G. Singhvi, William Andrew Publishing, (pp. 91–116). (2019)

  19. R. Shah, D. Eldridge, E. Palombo, and I. Harding (2014). J. Phys. Sci. 25, 59.

    CAS  Google Scholar 

  20. A. Loureiro, G. N. Azoia, C. A. Gomes, and A. Cavaco-Paulo (2016). Curr Pharm Des. https://doi.org/10.2174/1381612822666160125114900.

    Article  PubMed  Google Scholar 

  21. N. H. Abd Ellah and S. A. Abouelmagd (2016). Expert Opin Drug Deliv. https://doi.org/10.1080/17425247.2016.1213238.

    Article  PubMed  Google Scholar 

  22. T. Khan, R. Ahmad, S. Joshi, and A. R. Khan (2015). Der Chemica Sinica. 6, 1.

    Google Scholar 

  23. S. Z. Habibzadeh, A. Salehzadeh, Z. Moradi-Shoeili, and S. A. S. Shandiz (2020). Mol Biol Rep. https://doi.org/10.1007/s11033-020-05251-7.

    Article  PubMed  Google Scholar 

  24. M. Bejarbaneh, Z. Moradi-Shoeili, A. Jalali, and A. Salehzadeh (2020). Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02049-3.

    Article  PubMed  Google Scholar 

  25. P. C. A. Kam and N. I. Ferch (2000). Anaesthesia. https://doi.org/10.1046/j.1365-2044.2000.01554.x.

    Article  PubMed  Google Scholar 

  26. B. Sun, N. Hu, L. Han, Y. Pi, Y. Gao, and K. Chen (2019). Artif Cells Nanomed Biotechnol. https://doi.org/10.1080/21691401.2019.1575844.

    Article  PubMed  Google Scholar 

  27. A. Yaqub, N. Malkani, A. Shabbir, S. A. Ditta, F. Tanvir, S. Ali, and R. Ullah (2020). Artif Cells Nanomed Biotechnol. https://doi.org/10.1080/21691401.2019.1575844.

    Article  Google Scholar 

  28. M. Azizi, H. Ghourchian, F. Yazdian, F. Dashtestani, and H. AlizadehZeinabad (2017). PLoS ONE. https://doi.org/10.1371/journal.pone.0188639.

    Article  PubMed  PubMed Central  Google Scholar 

  29. A. Habibi, S. A. S. Sadat Shandiz, A. Salehzadeh, and Z. Moradi (2020). J Biol Inorg Chem. https://doi.org/10.1007/s00775-019-01728-4.

    Article  PubMed  Google Scholar 

  30. M. Jarestan, K. Khalatbari, A. Pouraei, S. A. S. Sadat Shandiz, S. Beigi, M. Hedayati, and A. Salehzadeh (2020). 3 Biotech. https://doi.org/10.1007/s13205-020-02230-4.

    Article  PubMed  PubMed Central  Google Scholar 

  31. M. R. Izadpanah, A. Salehzadeh, M. Zaefizadeh, and M. Nikpasand (2020). IET Nanobiotechnol. https://doi.org/10.1049/iet-nbt.2019.0199.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to appreciate Dr. Zeinab Moradi-Shoeili for collaborate on the interpretation of chemical spectra.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Salehzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiei, I., Tavassoli, S.P., Rahmatollahi, H.R. et al. A Novel Copper Oxide Nanoparticle Conjugated by Thiosemicarbazone Promote Apoptosis in Human Breast Cancer Cell Line. J Clust Sci 33, 2697–2706 (2022). https://doi.org/10.1007/s10876-021-02187-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02187-1

Keywords

Navigation