Skip to main content
Log in

Metal Complexes of a Thiosemicarbazone with Heterocyclic Bases as Coligands: Spectral Characterization, Crystal Structures, DFT and In silico Docking Studies

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Copper(II) and zinc(II) complexes, [Cu(esct)(4-pico)] (1), [Zn(esct)(5,5′-dmbipy)]·H2O (2), [Cu(esct)(5,5′-dmbipy)] (3), (where H2esct = 3-ethoxysalicylaldehye-N4-cyclohexylthiosemicarbazone) were synthesized by reacting copper acetate/zinc acetate with the thiosemicarbazone derivative (H2esct) along with heterocyclic bases. The thiosemicarbazone forms doubly deprotonated anions in all the complexes to coordinate via thiolate S, azomethine N and phenolate O atoms. The complexes were characterized by various spectroscopic techniques like infrared, UV–vis, 1H NMR and EPR spectra. The single crystal XRD studies confirmed the structures. All the three complexes got crystallized in triclinic space group P \(\overline{1 }.\) Complexes are found to have four, five and six coordination around the metal center. The importance of van der Waals interactions in them is explained by Hirshfeld surface analysis. We have used Density Functional Theory (DFT) methods and optimized ground states of the studied complexes using the Gaussian 09 package. Electrostatic potential plots of complexes were investigated. Further, docking studies were carried out with various Epidermal Growth Factor Receptor (EGFR) enzymes.

Graphical Abstract

Three mixed ligand Cu(II) and Zn(II) complexes prepared from a thiosemicarbazone showed interesting geometries and structures

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Crystallographic data for the structural analysis has been deposited with the Cambridge Crystallographic Data Center as CCDC 2158232, 1981316 and 1981315 for complexes 1, 2 and 3 respectively. This may be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html or from the Director, CCDC, 12 Union Road, Cambridge, CB2, 1EZ, UK.

References

  1. Rapheal PF, Manoj E, Kurup MRP (2007) Syntheses and EPR spectral studies of manganese(II) complexes derived from pyridine-2-carbaldehyde based N(4)-substituted thiosemicarbazones: crystal structure of one complex. Polyhedron 26:5088–5094. https://doi.org/10.1016/j.poly.2007.07.028

    Article  CAS  Google Scholar 

  2. Manoj E, Kurup MRP (2008) Structural and spectral studies of nickel(II) complexes with N(4), N(4)-(butane-1,4-diyl) thiosemicarbazones. Polyhedron 27:275–282. https://doi.org/10.1016/j.poly.2007.09.023

    Article  CAS  Google Scholar 

  3. Seena EB, Kurup MRP, Suresh E (2008) Crystal study of salicylaldehyde N(4)-phenylthiosemicarbazone. J Chem Crystallogr 38:93–96. https://doi.org/10.1007/s10870-007-9268-8

    Article  CAS  Google Scholar 

  4. Seena EB, Kurup MRP (2007) Synthesis of mono- and binuclear dioxomolybdenum(VI) complexes derived from N(4)-substituted thiosemicarbazones : X-ray crystal structure of [(MoO2L1)2], [MoO2L1py] and [MoO2L2py]. Polyhedron 26:3595–3601. https://doi.org/10.1016/j.poly.2007.03.046

    Article  CAS  Google Scholar 

  5. He Z, Qiao H, Yang F, Zhou W, Gong Y, Zhang X, Wang H, Zhao B, Ma L, H-min L, Zhao W (2019) Novel thiosemicarbazone derivatives containing indole fragment as potent and selective anticancer agent. Eur J Med Chem 184:111764. https://doi.org/10.1016/j.ejmech.2019.111764

    Article  CAS  PubMed  Google Scholar 

  6. Pósa V, Hajdu B, Tóth G, Dömötör O, Kowol CR, Keppler BK, Spengler G, Gyurcsik B, Enyedy ÉA (2022) The coordination modes of (thio)semicarbazone copper(II) complexes strongly modulate the solution chemical properties and mechanism of anticancer activity. J Inorg Biochem 231:111786. https://doi.org/10.1016/j.jinorgbio.2022.111786

    Article  CAS  PubMed  Google Scholar 

  7. Parrilha GL, dos Santos RG, Beraldo H (2022) Applications of radiocomplexes with thiosemicarbazones and bis(thiosemicarbazones) in diagnostic and therapeutic nuclear medicine. Coord Chem Rev 458:214418. https://doi.org/10.1016/j.ccr.2022.214418

    Article  CAS  Google Scholar 

  8. Savir S, Wei ZJ, Liew JWK, Vythilingam I, Lim YAL, Saad HM, Sim KS, Tan KW (2020) Synthesis, cytotoxicity and antimalarial activities of thiosemicarbazones and their nickel(II) complexes. J Mol Struct 1211:128090. https://doi.org/10.1016/j.molstruc.2020.128090

    Article  CAS  Google Scholar 

  9. Haribabu J, Alajrawy OI, Jeyalakshmi K, Balachandran C, Krishnan DA, Bhuvanesh N, Aoki S, Natarajan K, Karvembu R (2021) N-substitution in isatin thiosemicarbazones decides nuclearity of Cu(II) complexes – Spectroscopic, molecular docking and cytotoxic studies. Spectrochim Acta A 246:118963. https://doi.org/10.1016/j.saa.2020.118963

    Article  CAS  Google Scholar 

  10. Whitnall M, Howard J, Ponka P, Richardson DR (2006) A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics. Proc Natl Acad Sci USA 103:14901. https://doi.org/10.1073/pnas.0604979103

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mathews NA, Kurup MRP (2022) Copper(II) complexes as novel anticancer drug: synthesis, spectral studies, crystal structures, in silico molecular docking and cytotoxicity. J Mol Struct 1258:132672. https://doi.org/10.1016/j.molstruc.2022.132672

    Article  CAS  Google Scholar 

  12. Sensi SL, Granzotto A, Siotto M, Squitti R (2018) Copper and zinc dysregulation in Alzheimer’s disease. Trends Pharmacol Sci 39:1049–1063. https://doi.org/10.1016/j.tips.2018.10.001

    Article  CAS  PubMed  Google Scholar 

  13. Khan SA, Nami SAA, Bhat SA, Kareem A, Nishat N (2017) Synthesis, characterization and antimicrobial study of polymeric transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Microb Pathog 110:414–425. https://doi.org/10.1016/j.micpath.2017.07.008

    Article  CAS  PubMed  Google Scholar 

  14. Nanjundan N, Narayanasamy R, Butcher RJ, Jasinski JP, Velmurugan K, Nandhakumar R, Balakumaran MD, Kalaichelvan PT, Gnanasoundari VG (2017) Synthesis, crystal structure, biomolecular interactions and anticancer properties of Ni(II), Cu(II) and Zn(II) complexes bearing S-allyldithiocarbazate. Inorg Chim Acta 455:283–297. https://doi.org/10.1016/j.ica.2016.10.035

    Article  CAS  Google Scholar 

  15. Kumar S, Hansda A, Chandra A, Kumar A, Kumar M, Sithambaresan M, Faizi MSH, Kumar V, John RP (2017) Co(II), Ni(II), Cu(II) and Zn(II) complexes of acenaphthoquinone 3-(4-benzylpiperidyl)thiosemicarbazone: synthesis, structural, electrochemical and antibacterial studies. Polyhedron 134:11–21. https://doi.org/10.1016/j.poly.2017.05.055

    Article  CAS  Google Scholar 

  16. Huang S, Luo H, Liu Y, Su W, Xiao Q (2020) Comparable investigation of binding interactions between three arene ruthenium(II) thiosemicarbazone complexes and calf thymus DNA. Polyhedron 192:114864. https://doi.org/10.1016/j.poly.2020.114864

    Article  CAS  Google Scholar 

  17. Ganim MA, Baloglu MC, Aygun A, Altunoglu YC, Sayiner HS, Kandemirli F, Sen F (2019) Analysis of DNA protection, interaction and antimicrobial activity of isatin derivatives. Int J Biol Macromol 122:1271–1278. https://doi.org/10.1016/j.ijbiomac.2018.09.084

    Article  CAS  PubMed  Google Scholar 

  18. Khan A, Paul KI, Singh K, Jasinski JP, Smolenski VA, Hotchkiss EP, Kelley PT, Shalit ZA, Kaur M, Banerjee S, Roy P, Sharma R, (2020) Copper(I) and silver(I) complexes of anthraldehyde thiosemicarbazone: synthesis, structure elucidation: In vitro anti-tuberculosis/cytotoxic activity and interactions with DNA/HAS. Dalton Trans 49:17350–17367. https://doi.org/10.1039/D0DT03104F

    Article  CAS  PubMed  Google Scholar 

  19. Mendelsohn J, Baselga J (2000) The EGF receptor family as targets for cancer therapy. Oncogene 19:6550–6565. https://doi.org/10.1038/sj.onc.1204082

    Article  CAS  PubMed  Google Scholar 

  20. Sheeja SR, Mangalam NA, Sithambaresan M, Kurup MRP, Kaya S, Serdaroğlu G (2021) Spectral studies and quantum chemical ab initio calculations for copper(II) complexes of two heterocyclic aroylhydrazones. J Mol Struct 1245:131001. https://doi.org/10.1016/j.molstruc.2021.131001

    Article  CAS  Google Scholar 

  21. Jacob JM, Kurup MRP, Nisha K, Serdaroglu G, Kaya S (2020) Mixed ligand copper(II) chelates derived from an O, N, S- donor tridentate thiosemicarbazone: synthesis, spectral aspects, FMO, and NBO analysis. Polyhedron 189:114736. https://doi.org/10.1016/j.poly.2020.114736

    Article  CAS  Google Scholar 

  22. Maniyampara PK, Suresh LK, Jayakumar K, Kurup ME, MRP (2023) Novel cobalt complexes of pyridine-based NNS donor thiosemicarbazones: synthesis, X-ray characterization, DFT calculations, Hirshfeld surface analysis, and molecular docking studies. J Mol Struct 1275:134680. https://doi.org/10.1016/j.poly.2020.114736

    Article  CAS  Google Scholar 

  23. Nair Y, Joy F, Vinod TP, Vineetha MC, Kurup MRP, Kaya S, Serdaroğlu G, Erkan S (2023) Spectroscopic, crystal structure and DFT assisted studies of some nickel(II) chelates of a heterocyclic based NNO donor aroylhydrazone: in vitro DNA binding and docking studies. Mol Divers. https://doi.org/10.1007/s11030-023-10599-6

    Article  PubMed  Google Scholar 

  24. SMART and SAINT, area detector software package and sax area detector integration program, Bruker analytical X-ray, Madison, WI, USA, 1997

  25. SADABS, area detector absorption correction program; Bruker analytical x-ray; Madison, WI, USA, 1997

  26. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C 71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  ADS  CAS  Google Scholar 

  27. Farrugia LJ (2012) WinGX and ORTEP for Windows: an update. J Appl Crystallogr 45:849–854. https://doi.org/10.1107/S0021889812029111

    Article  ADS  CAS  Google Scholar 

  28. Brandenburg K (2010) Diamond Version 3.2g, Crystal Impact GbR, Bonn, Germany

  29. Mathews NA, Jacob JM, Begum PMS, Kurup MRP (2020) Cu(II) and Zn(II) complexes from a thiosemicarbazone derivative: investigating the intermolecular interactions, crystal structures and cytotoxicity. J Mol Struct 1202:127319. https://doi.org/10.1016/j.molstruc.2019.127319

    Article  CAS  Google Scholar 

  30. Ishaq M, Taslimi P, Shafiq Z, Khan S, Salmas ER, Zangeneh MM, Saeed A, Zangeneh A, Sadeghian N, Asari A, Mohamad H (2020) Synthesis, bioactivity and binding energy calculations of novel 3-ethoxysalicylaldehyde based thiosemicarbazone derivatives. Bioorg Chem 100:103924. https://doi.org/10.1016/j.bioorg.2020.103924

    Article  CAS  PubMed  Google Scholar 

  31. Spackman MA, Byrom PG (1997) A novel definition of a molecule in a crystal. Chem Phys Lett 267:215–220. https://doi.org/10.1016/S0009-2614(97)00100-0

    Article  ADS  CAS  Google Scholar 

  32. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32. https://doi.org/10.1039/B818330A

    Article  CAS  Google Scholar 

  33. Seth SK, Sarkar D, Jana AD, Kar T (2011) On the possibility of tuning molecular edges to direct supramolecular self-assembly in coumarin derivatives through cooperative weak forces: crystallographic and Hirshfeld surface analyses. Cryst Growth Des 11:4837–4849. https://doi.org/10.1021/cg2006343

    Article  CAS  Google Scholar 

  34. Meyer AY (1986) The size of molecules. Chem Soc Rev 15:449–474. https://doi.org/10.1039/CS9861500449

    Article  CAS  Google Scholar 

  35. Gaussian 09, 2016 Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, and Fox DJ, Gaussian, Inc., Wallingford CT

  36. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  ADS  CAS  Google Scholar 

  37. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Dennington RD, Keith TA, Millam JM (2016) GaussView, version 6.0. 16. Semichem Inc Shawnee Mission KS

  39. Gu Y, Xu X (2020) Extended Koopmans’ theorem at the second-order perturbation theory. Comput Chem 41:1165–1174. https://doi.org/10.1002/jcc.26163

    Article  CAS  Google Scholar 

  40. Debnath B, Ganguly S (2016) Synthesis, biological evaluation, in silico docking, and virtual ADME studies of 2-[2-oxo-3-(arylimino)indolin-1-yl]-N-arylacetamides as potent anti-breast cancer agents. Montash Chem 147:565–574. https://doi.org/10.1007/s00706-015-1566-9

    Article  CAS  Google Scholar 

  41. Addison AW, Rao TN, Reedijk J, van Rijn J, Verschoor GC (1984) Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J Chem Soc, Dalton Trans. https://doi.org/10.1039/DT9840001349

    Article  Google Scholar 

  42. Venugopal R, Sreejith SS, Kurup MRP (2019) Crystallographic, spectroscopic and theoretical investigations on Ni(II) complexes of a tridentate NNS donor thiosemicarbazone. Polyhedron 158:3. https://doi.org/10.1016/j.poly.2018.11.023

    Article  CAS  Google Scholar 

  43. Joseph M, Sreekanth A, Suni V, Kurup MRP (2006) Spectral characterization of iron(III) complexes of 2-benzoylpyridine N(4)-substituted thiosemicarbazones. Spectrochim Acta A 64:637–641. https://doi.org/10.1016/j.saa.2005.07.067

    Article  ADS  CAS  Google Scholar 

  44. Suni V, Kurup MRP, Nethaji M (2007) Studies on Co(II) and Co(III) complexes of di-2-pyridyl ketone N(4)-cyclohexyl and N(4)-phenyl thiosemicarbazones. Polyhedron 26:5203–5209. https://doi.org/10.1016/j.poly.2007.07.051

    Article  CAS  Google Scholar 

  45. Latheef L, Kurup MRP (2008) Spectral and structural studies of nickel(II) complexes of salicylaldehyde 3-azacyclothiosemicarbazones. Polyhedron 27:35–43. https://doi.org/10.1016/j.poly.2007.08.048

    Article  CAS  Google Scholar 

  46. Mathews NA, Begum PMS, Kurup MRP (2020) Synthesis, characterization, biological screening and molecular docking of Zn(II) and Cu(II) complexes of 3, 5-dichlorosalicylaldehyde-N4-cyclohexylthiosemicarbazone. Appl Organomet Chem 34:e5294. https://doi.org/10.1002/aoc.5294

    Article  CAS  Google Scholar 

  47. Jayakumar K, Sithambaresan M, Aravindakshan AA, Kurup MRP (2014) Synthesis and spectral characterization of copper(II) complexes derived from 2-benzoylpyridine-N4-dimethyl-3-thiosemicarbazone: crystal structure of a binuclear complex. Polyhedron 75:50–56. https://doi.org/10.1016/j.poly.2014.02.042

    Article  CAS  Google Scholar 

  48. Jayakumar K, Seena EB, Kurup MRP, Kaya S, Serdaroğlu G, Suresh E, Marzouki R (2022) Spectral, thermal and DFT studies of novel nickel(II) complexes of 2-benzoylpyridine-N4-methyl-3- thiosemicarbazone: crystal structure of a square planar azido-nickel(II) complex. J Mol Struct 1253:132257. https://doi.org/10.1016/j.molstruc.2021.132257

    Article  CAS  Google Scholar 

  49. Seena EB, Sithambaresan M, Vasudevan S, Kurup MRP (2020) Structural and spectral characterization of Cu(II) complexes of N(4)-substituted thiosemicarbazones derived from 2-hydroxyacetophenone: crystal structure of a dinuclear Cu(II) complex. J Chem Sci 132:149. https://doi.org/10.1007/s12039-020-01845-7

    Article  CAS  Google Scholar 

  50. Abu-Dief AM, Abdel-Rahman LH, Abdelhamid AA, Marzouk AA, Shehata MR, Bakheet MA, Almaghrabi OA, Nafady A (2020) Synthesis and characterization of new Cr(III), Fe(III) and Cu(II) complexes incorporating multi-substituted aryl imidazole ligand: Structural, DFT, DNA binding, and biological implications. Spectrochim Acta A 228:117700. https://doi.org/10.1016/j.saa.2019.117700

    Article  CAS  Google Scholar 

  51. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55. https://doi.org/10.1016/j.jmr.2005.08.013

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Smith TD, Pilbrow J (1974) The determination of structural properties of dimeric transition metal ion complexes from EPR spectra. Coord Chem Rev 13:173–278. https://doi.org/10.1016/S0010-8545(00)80255-6

    Article  CAS  Google Scholar 

  53. Kivelson D, Neiman R (1961) ESR studies on the bonding in copper complexes. J Chem Phys 35:149–155. https://doi.org/10.1063/1.1731880

    Article  ADS  CAS  Google Scholar 

  54. Tom L, Aiswarya N, Sreejith SS, Kurup MRP (2018) Self-organized three dimensional architectures based on non-covalent interactions in square planar Cu(II) thiosemicarbazone: solvent mediated crystallization and EPR based correlation study. Inorg Chim Acta 473:223–235. https://doi.org/10.1016/j.ica.2018.01.005

    Article  CAS  Google Scholar 

  55. El-Gammal OA, El-Reash GMA, Bedier RA (2019) Synthesis, spectroscopic, DFT, biological studies and molecular docking of oxovanadium(IV), copper(II) and iron(III) complexes of a new hydrazone derived from heterocyclic hydrazide. Appl Organomet Chem 33:e5141. https://doi.org/10.1002/aoc.5141

    Article  CAS  Google Scholar 

  56. Hathaway BJ (1973) The evidence for “out-of-the plane” bonding in axial complexes of the copper(II) ion. Struct Bond 14:49–67. https://doi.org/10.1007/BFb0016871

    Article  CAS  Google Scholar 

  57. Sreejith SS, Mohan N, Kurup MRP (2017) Experimental and theoretical investigations on Pd(II) host-guest compound: deciphering the structural and electronic features of a potential bioactive complex. J Mol Struct 1145:170–183. https://doi.org/10.1016/j.molstruc.2017.05.068

    Article  ADS  CAS  Google Scholar 

  58. Devi PP, Kalaivania D (2016) Isoquinolinium 5-(2,4-dinitrophenyl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate: crystal structure, Hirshfeld surface analysis and pharmacological evaluation. Acta Cryst E72:570

    Google Scholar 

  59. Spackman PR, Turner MJ, Mckinnon JJ, Wolff SK, Grimwood DJ, Jayatilaka D, Spackman MA (2021) CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystallogr 54:1006–1011. https://doi.org/10.1107/S1600576721002910

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Agbektas T, Zontul C, Ozturk A, Huseynzada A, Ganbarova R, Hasanova U, Cinar G, Tas A, Kaya S, Chtita S, Silig Y (2023) Effect of azomethine group containing compounds on gene profiles in Wnt and MAPK signal patterns in lung cancer cell line: In silico and in vitro analyses. J Mol Struct 1275:134619. https://doi.org/10.1016/j.molstruc.2022.134619

    Article  CAS  Google Scholar 

  61. Mohamed AS, Jourdain I, Knorr M, Elmi A, Chtita S, Scheel R, Strohmann C, Hussien MA (2022) Design of hydroxyl- and thioether-functionalized iron-platinum dimetallacyclopentenone complexes. Crystal and electronic structures, Hirshfeld and docking analyses and anticancer activity evaluated by in silico simulation. J Mol Struct. 1251:131979. https://doi.org/10.1016/j.molstruc.2021.131979

    Article  CAS  Google Scholar 

  62. Banuppriya G, Sribalan R, Padmini V (2018) Synthesis and characterization of curcumin-sulfonamide hybrids: biological evaluation and molecular docking studies. J Mol Struct 1155:90–100. https://doi.org/10.1016/j.molstruc.2017.10.097

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

SAIF, CUSAT, Kochi, India is acknowledged for single crystal X-ray diffraction measurements. Prof. M. Zeller, Department of Chemistry, Purdue University is acknowledged for his help in refining the SCXRD data. The authors acknowledge IIT Bombay, Mumbai, India for EPR studies.

Funding

NAM is thankful to the UGC, New Delhi, India for providing financial assistance under UGC-SRF (111132/June 2017).

Author information

Authors and Affiliations

Authors

Contributions

Nimya Ann Mathews, Prathapachandra Kurup, M R, Savas Kaya wrote the manuscript, Samir Chtita performed the computational studies, Sithambaresan M performed investigation of EPR and prepared the EPR and crystal figures.

Corresponding author

Correspondence to M. R. Prathapachandra Kurup.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interests

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10870_2023_1001_MOESM1_ESM.doc

Supplementary file1 (DOC 2293 KB)—Selected bond lengths, bond angles and interactions of the compounds are presented inTables S1-S6. IR spectral assignments, electronic spectral assignments, EPR assignments are provided in Tables S7-S10. Hirshfeld surface analysis attributes are given in Table S11.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathews, N.A., Sithambaresan, M., Kaya, S. et al. Metal Complexes of a Thiosemicarbazone with Heterocyclic Bases as Coligands: Spectral Characterization, Crystal Structures, DFT and In silico Docking Studies. J Chem Crystallogr 54, 99–113 (2024). https://doi.org/10.1007/s10870-023-01001-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-023-01001-2

Keywords

Navigation