Skip to main content
Log in

COORDINATION OF AN AMINO ALCOHOLIC SCHIFF BASE LIGAND TOWARD THE ZINC(II) ION: SPECTRAL, STRUCTURAL, THEORETICAL, AND DOCKING STUDIES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A new zinc(II) complex of 2-(((2-((2-hydroxyethyl)amino)ethyl)imino)methyl)phenol (L), [Zn(Lz)Br2] (1), is prepared and identified by elemental analysis, FTIR and 1H NMR spectroscopy, and single crystal X-ray diffraction. The X-ray structure analysis of 1 reveals a tetrahedrally coordinated zinc(II) complex containing the NO-donor amino alcoholic Schiff base ligand and two bromo ligands. After complexation, the ligand (L) converts to its zwitterionc form (Lz) of phenol → phenolate; amine → ammonium. In this structure, hydrogen bonds between amine and alcohol units form different types of hydrogen bond motifs, including \(\text{R}_{2}^{1}(7)\), \(\text{R}_{2}^{2}(7),\ \text{R}_{2}^{2}(10),\ \text{R}_{4}^{4}(24),\ \text{R}_{4}^{4}(30),\ \text{R}_{6}^{6}(38)\), and \(\text{R}_{6}^{6}(44)\). In addition to the hydrogen bonds in this crystal network, there are π–π stacking interactions between the phenyl ring and the imine group. The ability of the ligand and its isostructural complexes [Zn(Lz)Br2] (1), [Zn(Lz)Cl2] (2), and [Zn(Lz)I2] (3) to interact with ten selected biomacromolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS, Top II, and B-DNA) is investigated by docking studies. The results show that in some cases, the studied compound can interact with proteins and DNA better than doxorubicin. The charge distribution pattern of the ligand and complex 1 is studied by the NBO analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. E. Fullam, A. Abuhammad, D. L. Wilson, M. C. Anderton, S. G. Davies, A. J. Russell, and E. Sim. Bioorg. Med. Chem. Lett., 2011, 21, 1185. https://doi.org/10.1016/j.bmcl.2010.12.099

    Article  CAS  Google Scholar 

  2. R. Yendapally and R. E. Lee. Bioorg. Med. Chem. Lett., 2008, 18, 1607. https://doi.org/10.1016/j.bmcl.2008.01.065

    Article  CAS  Google Scholar 

  3. H. X. Wei, D. Lu, V. Sun, J. Zhang, Y. Gu, P. Osenkowski, W. Ye, D. J. Selkoe, M. S. Wolfe, and C. E. Augelli-Szafran. Bioorg. Med. Chem. Lett., 2016, 26, 2133. https://doi.org/10.1016/j.bmcl.2016.03.042

    Article  CAS  Google Scholar 

  4. I. Declerck, B. Himpens, G. Droogmans, and R. Casteels. Pflügers Arch., 1990, 417, 117. https://doi.org/10.1007/BF00370780

    Article  CAS  PubMed  Google Scholar 

  5. M. M. Weinberger. Pediatr. Clin. North Am., 1975, 22, 121. https://doi.org/10.1016/S0031-3955(16)33107-8

    Article  CAS  PubMed  Google Scholar 

  6. S. J. Kwon and S. Y. Ko. Tetrahedron Lett., 2002, 43, 639. https://doi.org/10.1016/S0040-4039(01)02206-7

    Article  CAS  Google Scholar 

  7. W. H. Frishman. Circulation, 2003, 107, e117. https://doi.org/10.1161/01.CIR.0000070983.15903.A2

    Article  PubMed  Google Scholar 

  8. D. T. Nash. Clin. Cardiol., 1990, 13, 764. https://doi.org/10.1002/clc.4960131104

    Article  CAS  PubMed  Google Scholar 

  9. Z. Mardani, R. Kazemshoar-Duzduzani, K. Moeini, A. Hajabbas-Farshchi, C. Carpenter-Warren, A. M. Z. Slawin, and J. D. Woollins. RSC Adv., 2018, 8, 28810. https://doi.org/10.1039/C8RA04578J

    Article  CAS  Google Scholar 

  10. Z. Mardani, M. Hakimi, K. Moeini, and F. Mohr. Acta Crystallogr., Sect. C, 2019, 75, 951. https://doi.org/10.1107/S2053229619008258

    Article  CAS  Google Scholar 

  11. K. Chennakesava Rao, Y. Arun, K. Easwaramoorthi, C. Balachandran, T. Prakasam, T. Eswara Yuvaraj, and P. T. Perumal. Bioorg. Med. Chem. Lett., 2014, 24, 3057. https://doi.org/10.1016/j.bmcl.2014.05.027

    Article  CAS  Google Scholar 

  12. S. Vanguru, L. Jilla, Y. Sajja, R. Bantu, L. Nagarapu, J. B. Nanubolu, B. Bhaskar, N. Jain, S. Sivan, and V. Manga. Bioorg. Med. Chem. Lett., 2017, 27, 792. https://doi.org/10.1016/j.bmcl.2017.01.031

    Article  CAS  Google Scholar 

  13. M. Zhang, D.-M. Xian, H.-H. Li, J.-C. Zhang, and Z.-L. You. Aust. J. Chem., 2012, 65, 343. https://doi.org/10.1071/CH11424

    Article  CAS  Google Scholar 

  14. M. D. Altintop, A. Özdemir, G. Turan-Zitouni, S. Ilgin, Ö. Atli, G. İşcan, and Z. A. Kaplancikli. Eur. J. Med. Chem., 2012, 58, 299. https://doi.org/10.1016/j.ejmech.2012.10.011

    Article  CAS  PubMed  Google Scholar 

  15. V. C. Da Silveira, J. S. Luz, C. C. Oliveira, I. Graziani, M. R. Ciriolo, and A. M. D. C. Ferreira. J. Inorg. Biochem. 2008, 102, 1090. https://doi.org/10.1016/j.jinorgbio.2007.12.033

    Article  CAS  PubMed  Google Scholar 

  16. K. Shanker, R. Rohini, V. Ravinder, P. M. Reddy, and Y.-P. Ho. Spectrochim. Acta, Part A, 2009, 73, 205. https://doi.org/10.1016/j.saa.2009.01.021

    Article  CAS  Google Scholar 

  17. H.-W. Lin. Synth. React. Inorg. Nano-Met. Chem., 2009, 39, 73. https://doi.org/10.1080/15533170902762595

    Article  CAS  Google Scholar 

  18. M. Taha, N. H. Ismail, M. S. Baharudin, S. Lalani, S. Mehboob, K. M. Khan, S. Yousuf, S. Siddiqui, F. Rahim, and M. I. Choudhary. Med. Chem. Res., 2015, 24, 1310. https://doi.org/10.1007/s00044-014-1213-8

    Article  CAS  Google Scholar 

  19. C. Jing, C. Wang, K. Yan, K. Zhao, G. Sheng, D. Qu, F. Niu, H. Zhu, and Z. You. Bioorg. Med. Chem., 2016, 24, 270. https://doi.org/10.1016/j.bmc.2015.12.013

    Article  CAS  Google Scholar 

  20. J. R. Morrow and K. A. Kolasa. Inorg. Chim. Acta, 1992, 195, 245. https://doi.org/10.1016/S0020-1693(00)85319-0

    Article  CAS  Google Scholar 

  21. A. D. Tiwari, A. K. Mishra, S. B. Mishra, B. B. Mamba, B. Maji, and S. Bhattacharya. Spectrochim. Acta, Part A, 2011, 79, 1050. https://doi.org/10.1016/j.saa.2011.04.018

    Article  CAS  Google Scholar 

  22. E. M. Hodnett and W. J. Dunn. J. Med. Chem., 1970, 13, 768. https://doi.org/10.1021/jm00298a054

    Article  CAS  PubMed  Google Scholar 

  23. E. M. Hodnett and W. J. Dunn. J. Med. Chem., 1972, 15, 339. https://doi.org/10.1021/jm00273a037

    Article  CAS  PubMed  Google Scholar 

  24. V. R. Martínez, M. V. Aguirre, J. S. Todaro, O. E. Piro, G. A. Echeverría, E. G. Ferrer, and P.a.M. Williams. Toxicol. In Vitro, 2018, 48, 205. https://doi.org/10.1016/j.tiv.2018.01.009

    Article  CAS  PubMed  Google Scholar 

  25. A. Adhikari, N. Kumari, M. Adhikari, N. Kumar, A. K. Tiwari, A. Shukla, A. K. Mishra, and A. Datta. Bioorg. Med. Chem., 2017, 25, 3483. https://doi.org/10.1016/j.bmc.2017.04.035

    Article  CAS  Google Scholar 

  26. J. Dam, Z. Ismail, T. Kurebwa, N. Gangat, L. Harmse, H. M. Marques, A. Lemmerer, M. L. Bode, and C. B. De Koning. Eur. J. Med. Chem., 2017, 126, 353. https://doi.org/10.1016/j.ejmech.2016.10.041

    Article  CAS  PubMed  Google Scholar 

  27. L. Saghatforoush, K. Moeini, S. A. Hosseini-Yazdi, Z. Mardani, A. Hajabbas-Farshchi, H. T. Jameson, S. G. Telfer, and J. D. Woollins. RSC Adv., 2018, 8, 35625. https://doi.org/10.1039/C8RA07463A

    Article  CAS  Google Scholar 

  28. F. Marandi, K. Moeini, F. Alizadeh, Z. Mardani, C. K. Quah, W.-S. Loh, and J. D. Woollins. Inorg. Chim. Acta, 2018, 482, 717-725. https://doi.org/10.1016/j.ica.2018.07.014

    Article  CAS  Google Scholar 

  29. F. Marandi, K. Moeini, F. Alizadeh, Z. Mardani, C. K. Quah, and W.-S. Loh. Z. Naturforsch. B, 2018, 73, 369-375. https://doi.org/10.1515/znb-2018-0043

    Article  CAS  Google Scholar 

  30. F. Marandi, K. Moeini, A. Arkak, Z. Mardani, and H. Krautscheid. J. Coord. Chem., 2018, 71, 3893-3911. https://doi.org/10.1080/00958972.2018.1543871

    Article  CAS  Google Scholar 

  31. Z. Mardani, V. Golsanamlou, Z. Jabbarzadeh, K. Moeini, S. Khodavandegar, C. Carpenter-Warren, A. M. Z. Slawin, and J. D. Woollins. J. Coord. Chem., 2018, 71, 4109-4131. https://doi.org/10.1080/00958972.2018.1536268

    Article  CAS  Google Scholar 

  32. L. Saghatforonsh, M. Hakimi, A. Gholipour, A. Bakhtiary, K. Moeini, V. Eigner, and M. Duek. Polyhedron, 2021, 208, 115440. https://doi.org/10.16/i.poly.2021.115440

    Article  CAS  Google Scholar 

  33. M. Hakimi, Z. Mardani, and K. Moeini. J. Chem. Res., 2013, 37, 140. https://doi.org/10.3184/174751913X13575773628099

    Article  CAS  Google Scholar 

  34. M. Hakimi, Z. Mardani, K. Moeini, E. Schuh, and F. Mohr. Z. Naturforsch. B, 2013, 68, 272. https://doi.org/10.5560/znb.2013-2295

    Article  CAS  Google Scholar 

  35. M. Hakimi, Z. Mardani, K. Moeini, and F. Mohr. Polyhedron, 2015, 102, 569. https://doi.org/10.1016/j.poly.2015.10.038

    Article  CAS  Google Scholar 

  36. F. H. Allen. Acta Crystallogr., Sect. B, 2002, 58, 380-388. https://doi.org/10.1107/S0108768102003890

    Article  Google Scholar 

  37. M. Hakimi, Z. Mardani, K. Moeini, F. Mohr, M. A. Fernandes. Polyhedron, 2014, 67, 27-35. https://doi.org/10.1016/j.poly.2013.08.065

    Article  CAS  Google Scholar 

  38. M. Hakimi, K. Moeini, Z. Mardani, and F. Mohr. Polyhedron, 2014, 70, 92. https://doi.org/10.1016/j.poly.2013.12.033

    Article  CAS  Google Scholar 

  39. F. Marandi, K. Moeini, B. Mostafazadeh, and H. Krautscheid. Polyhedron, 2017, 133, 146-154. https://doi.org/10.1016/j.poly.2017.05.029

    Article  CAS  Google Scholar 

  40. M. Hakimi, H. Rezaei, K. Moeini, Z. Mardani, V. Eigner, and M. Dušek. J. Mol. Struct., 2020, 1207, 127804. https://doi.org/10.1016/j.molstruc.2020.127804

    Article  CAS  Google Scholar 

  41. F. Marandi, K. Moeini, Z. Mardani, and H. Krautscheid. Acta Crystallogr., Sect. C, 2019, 75, 1023. https://doi.org/10.1107/S2053229619008301

    Article  CAS  Google Scholar 

  42. Z. Mardani, V. Golsanamlou, S. Khodavandegar, K. Moeini, A. M. Z. Slawin, and J. D. Woollins. J. Coord. Chem., 2018, 71, 120. https://doi.org/10.1080/00958972.2018.1426852

    Article  CAS  Google Scholar 

  43. G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor. J. Mol. Biol., 1997, 267, 727-748. https://doi.org/10.1006/jmbi.1996.0897

    Article  CAS  PubMed  Google Scholar 

  44. Drugs.com: Doxorubicin. https://www.drugs.com/mtm/doxorubicin.html (accessed Nov 07, 2018).

  45. A. Usman, H.-K. Fun, S. Chantrapromma, H.-L. Zhu, and Q.-X. Liu. Acta Crystallogr., Sect. E, 2003, 59, o215. https://doi.org/10.1107/S1600536803001144

    Article  CAS  Google Scholar 

  46. J.-Y. Ma, B.-L. Lv, S.-H. Gu, J.-W. Guo, and W.-P. Yin. Acta Crystallogr., Sect. E, 2006, 62, m1322. https://doi.org/10.1107/S1600536806017016

    Article  CAS  Google Scholar 

  47. T. Chattopadhyay, M. Mukherjee, K. S. Banu, A. Banerjee, E. Suresh, E. Zangrando, and D. Das. J. Coord. Chem., 2009, 62, 967. https://doi.org/10.1080/00958970802385837

    Article  CAS  Google Scholar 

  48. S.-J. Peng, H.-Y. Hou, and C.-S. Zhou. Synth. React. Inorg. Nano-Met. Chem., 2009, 39, 462. https://doi.org/10.1080/15533170903228190

    Article  CAS  Google Scholar 

  49. N. A. Ikmal Hisham, H. Khaledi, and H. Mohd Ali. Acta Crystallogr., Sect. E, 2011, 67, m932. https://doi.org/10.1107/S1600536811022021

    Article  Google Scholar 

  50. Y. J. Wei, F. W. Wang, and Q. Y. Zhu. Acta Crystallogr., Sect. E, 2008, 64, m859. https://doi.org/10.1107/S1600536808015730

    Article  CAS  Google Scholar 

  51. D. F. Zhang, M. H. Zhou, and C. J. Yuan. Acta Crystallogr., Sect. E, 2008, 64, m825. https://doi.org/10.1107/S1600536808014311

    Article  CAS  Google Scholar 

  52. X.-Y. Qiu. Acta Crystallogr., Sect. E, 2006, 62, m717. https://doi.org/10.1107/S1600536806007562

    Article  CAS  Google Scholar 

  53. X.-F. Li, Z.-L. You, P. Hou, and C.-L. Zhang. J. Chem. Crystallogr., 2010, 40, 561. https://doi.org/10.1007/s10870-010-9696-8

    Article  CAS  Google Scholar 

  54. S.-J. Peng, C.-S. Zhou, and T. Yang. Acta Crystallogr., Sect. E, 2006, 62, m1147. https://doi.org/10.1107/S1600536806014759

    Article  CAS  Google Scholar 

  55. X. W. Zhu and X. Z. Yang. Acta Crystallogr., Sect. E, 2008, 64, m1090. https://doi.org/10.1107/S1600536808023659

    Article  CAS  Google Scholar 

  56. X. W. Zhu. Acta Crystallogr., Sect. E, 2008, 64, m1456. https://doi.org/10.1107/S1600536808033977

    Article  CAS  Google Scholar 

  57. S.-S. Qian, H.-H. Li, H. Zhu, Z.-M. Yang, Z.-L. You, and H.-L. Zhu. Synth. React. Inorg. Nano-Met. Chem., 2013, 43, 412. https://doi.org/10.1080/15533174.2012.740742

    Article  CAS  Google Scholar 

  58. Y. X. Sun and Z. L. You. Synth. React. Inorg. Nano-Met. Chem., 2007, 36, 359. https://doi.org/10.1002/ejic.200790003

    Article  Google Scholar 

  59. F. Marandi, K. Moeini, and H. Krautscheid. Acta Crystallogr., Sect. C, 2019, 75, 1389. https://doi.org/10.1107/S2053229619011719

    Article  CAS  Google Scholar 

  60. J. M. German-Acacio, H. Tlahuext, and H. Hopfl. Acta Crystallogr., Sect. E, 2011, 67, o2849. https://doi.org/10.1107/S1600536811039997

    Article  Google Scholar 

  61. G. Sheldrick. Acta Crystallogr., Sect. A, 2014, 70, C1437. https://doi.org/10.1107/S2053273314085623

    Article  Google Scholar 

  62. G. Sheldrick. Acta Crystallogr., Sect. A, 2008, 64, 112. https://doi.org/10.1107/S0108767307043930

    Article  Google Scholar 

  63. L. J. Farrugia. J. Appl. Crystallogr., 1997, 30, 565. https://doi.org/10.1107/S0021889897003117

    Article  CAS  Google Scholar 

  64. M. N. Burnett and C. K. Johnson. Ortep-III, Report ORNL-6895. Oak Ridge, Tennessee: Oak Ridge National Laboratory, 1996.

  65. G. Bergerhof, M. Berndt, and K. Brandenburg. J. Res. Natl. Stand. Technol., 1996, 101, 221-225. https://doi.org/10.6028/jres.101.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian09. Wallingford, CT: Gaussian, Inc.: 2009.

  67. J. P. Perdew. Phys. Rev. B, 1986, 33, 8822. https://doi.org/10.1103/PhysRevB.33.8822

    Article  CAS  Google Scholar 

  68. A. Gavezzotti. Acc. Chem. Res., 1994, 27, 309. https://doi.org/10.1021/ar00046a004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Esmaeilzadeh.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 2, pp. 233-237.https://doi.org/10.26902/JSC_id88425

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeilzadeh, J., Mardani, Z., Moeini, K. et al. COORDINATION OF AN AMINO ALCOHOLIC SCHIFF BASE LIGAND TOWARD THE ZINC(II) ION: SPECTRAL, STRUCTURAL, THEORETICAL, AND DOCKING STUDIES. J Struct Chem 62 (Suppl 1), S8–S19 (2021). https://doi.org/10.1134/S0022476621130023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621130023

Keywords

Navigation