Skip to main content
Log in

Crystal Structure Characterization, Interaction Energy Analysis and DFT Studies of 3-(4-Chlorophenyl)-N-phenylquinoxalin-2-amine

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The title compound is synthesized, and characterized by spectroscopic and XRD methods. The compound crystallizes in the orthorhombic crystal system with the space group P212121. The structure exhibits C–H⋯N intermolecular interaction and π⋯π interactions. Hirshfeld surface analysis was performed to determine the individual contributions of intermolecular contacts to the crystal packing. The structural and electronic properties of the molecule were investigated by density functional theory method with B3LYP hybrid functional. Intramolecular interactions involved in the crystal structure was analyzed through topological atom-in-molecules analysis and noncovalent interactions method. Molecular electrostatic potential surface shows the chemical reactive regions around the nitrogen and hydrogen atoms.

Graphical Abstract

The article presents the characterization of synthesized compound by single crystal X-ray diffraction method. Atom-in-molecules analysis and noncovalent interactions Intramolecular interactions involved in the crystal structure were analyzed by DFT method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Al-Marhabi RA, Abbas HS, Ammar YA (2015) Molecules 20:19805–19822. https://doi.org/10.3390/molecules201119655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahmed EA, Mohamed MFA, Omran A, Salah H (2020). Synth Commun. https://doi.org/10.1080/00397911.2020.1787448

    Article  Google Scholar 

  3. Ismail MMF, Amin KM, Noaman E, Soliman DH, Ammar YA (2010) Eur J Med Chem 45:2733–2738

    Article  CAS  PubMed  Google Scholar 

  4. Yoo HW, Lee YS, Suh ME, Kim DJ, Park SW (1998) Arch Pharm 10:331–333

    Article  Google Scholar 

  5. Pereira JA, Pessoa AM, Cordeiro MNDS, Fernandes R, Prudencio C, Noronha JP, Vieira M (2015) Eur J Med Chem 97:664–672

    Article  CAS  PubMed  Google Scholar 

  6. El Newahie A, Nissan Y, Ismail N, El Ella AD, Khojah S, Abouzid K (2019) Molecules 24(6):1175. https://doi.org/10.3390/molecules24061175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alswah M, Ghiaty A, El-Morsy A (2013) K El-Gamal 587054:1–7. https://doi.org/10.1155/2013/587054

    Article  CAS  Google Scholar 

  8. Saadaoui I, Krichen F, Salah BB, Mansour R, Miled N, Bougatef A, Kossentini M (2018). J Mol Str. https://doi.org/10.1016/j.molstruc.2018.12.008

    Article  Google Scholar 

  9. El-Zahabi SAH (2017) Arch. Pharm. Chem. Life Sci. 350:e1700028. https://doi.org/10.1002/ardp.201700028

    Article  CAS  Google Scholar 

  10. Fabian L, Porro MT, Gómez N, Salvatori M, Turk G, Estrin D, Moglioni A (2020) Eur J Med Chem 188(111987):0223–5234. https://doi.org/10.1016/j.ejmech.2019.111987

    Article  CAS  Google Scholar 

  11. Elzupir AO, Ali MKM, Hussein RAH, Ibrahem MA, Al-Muhanna MK, Ibnaouf KH (2018). J Mol Str. https://doi.org/10.1016/j.molstruc.2018.10.035

    Article  Google Scholar 

  12. Montana M, Montero V, Khoumeri O, Vanelle P (2020) Molecules 25:2784. https://doi.org/10.3390/molecules25122784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oyallon B, Botineau BM, Logé C, Robert T, Bach S, Ibrahim S, Raoul W, Croix C, Berthelot P, Guillon J, Pinaud N, Gouilleux F, Massuard MV, Sabourin CD (2021) Molecules 26:867. https://doi.org/10.3390/molecules26040867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karzazi Y, Belghiti ME, El-Hajjaji F, Hammouti B (2016) J Mater Environ Sci 7(10):3916–3929

    CAS  Google Scholar 

  15. Kumar A, Kumar S, Saxena A, De A, Mozumdar S (2008) Catal Commun 9:778–784

    Article  CAS  Google Scholar 

  16. Raja B, Balachandran V, Revathi B, Anitha K (2018). Mater Res Innov. https://doi.org/10.1080/14328917.2018.1477544

    Article  Google Scholar 

  17. Dahbi S, Methnani E, Bisseret P (2010) Tetrahedron Lett 51:5516–5520

    Article  CAS  Google Scholar 

  18. Asif M (2016) Euro Rev Chem Res 8:31–51

    Google Scholar 

  19. Arthur F, Michael L, Graham S (2012) J Org Chem 45:1909–1919

    Google Scholar 

  20. Richard JK (2003) Chem Commun 18:2286–2287

    Google Scholar 

  21. Lainne SE, Suling WJ, Reynolds RC (2002) J Med Chem 45(25):5604–5606

    Article  Google Scholar 

  22. Kiran KR, Swaroop TR, Santhosh C, Rangappa KS, Sadashiva MP (2021) ChemistrySelect 6:1–5. https://doi.org/10.1002/slct.202102071

    Article  CAS  Google Scholar 

  23. Bruker (2012) SAINT PLUS. Bruker AXS Inc., Madison, Wisconsin

  24. Sheldrick GM (2008) Acta Cryst Sec A 64:112–122

    Article  CAS  Google Scholar 

  25. Spek AL (1990) Acta Cryst Sec A 46:34

    Google Scholar 

  26. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe PE, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) J App Cryst 41:466–470

    Article  CAS  Google Scholar 

  27. Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor RJ (1987) Chem Soc Perkin Trans 2(12):S1–S19

    Article  Google Scholar 

  28. Yang XJ, Drepper F, Wu B, Sun WH, Haehnel W, Janiak C (2005) Dalton Trans 2:256–267. https://doi.org/10.1039/B414999H

    Article  Google Scholar 

  29. Spackman MA, Jayatilaka D (2009) Cryst Eng Commun 11:19–32

    Article  CAS  Google Scholar 

  30. Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman MA (2017) CrystalExplorer17.5

  31. Spackman MA, McKinnon JJ (2002) Cryst Eng Comm 4(66):378–392. https://doi.org/10.1039/B203191B

    Article  CAS  Google Scholar 

  32. Mackenzie CF, Spackman PR, Jayatilaka D, Spackman MA (2017) IUCrJ 4:575–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Turner MJ, Thomas SP, Shi MW, Jayatilaka D, Spackman MA (2015) Chem Commun 51:3735–3738

    Article  CAS  Google Scholar 

  34. Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford CT. https://gaussian.com

  35. Tirado RJ, Jorgensen WL (2008) J Chem Theory Comput 4(2):297–306. https://doi.org/10.1021/ct700248k

    Article  CAS  Google Scholar 

  36. Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Tetrahedron 58(22):4417–4423. https://doi.org/10.1016/S0040-4020(02)00410-6

    Article  CAS  Google Scholar 

  37. Pearson RG (2005) J Chem Sci 117(5):369–377

    Article  CAS  Google Scholar 

  38. Kumar PSV, Raghavendra V, Subramanian V (2016) J Chem Sci 128(10):1527–1536

    Article  CAS  Google Scholar 

  39. Lohith TN, Hema MK, Karthik CS, Sandeep S, Mallesha L, Alsaiari NS, Sridhar MA, Katubi KM, Abualnaja KM, Lokanath NK, Mallu P (2022) J Mol Stru 26:133378. https://doi.org/10.1016/j.molstruc.2022.133378

    Article  CAS  Google Scholar 

  40. Jayappa M, Akhileshwari P, Sridhar MA, Nagarajappa L, Nagaraju S, Raghavendra S, Jayappa M (2021) Eur J Chem 12(1):69–76. https://doi.org/10.5155/eurjchem.12.1.69-76.2067

    Article  CAS  Google Scholar 

  41. Eimre K, Urgel JI, Hayashi H, Giovannantonio MD, Ruffieux P, Sato S, Otomo S, Chan YS, Aratani N, Passerone D, Groning O, Yamada H, Fasel R, Pignedoi CA (2022) Nat Commun 13:511. https://doi.org/10.1038/s41467-022-27961-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Laplaza R, Peccati FA, Boto R, Quan C, Carbone A, Piquemal J, Maday Y, Garcia JC (2020) J WIREs Comput Mol Sci 1497:1–18. https://doi.org/10.1002/wcms.1497

    Article  CAS  Google Scholar 

  43. Lu T, Chen F (2012) J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  44. Humphrey W, Dalke A, Schulten KJ (1996) J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Akhileshwari P. thanks to DST-KSTePS, Government of Karnataka, Bengaluru. Thanks to SAIF, IIT Madras, Chennai.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed in preparation of the manuscript. PA: Conceptualization and Interpretation of the data, visualization, methodology, and writing-original draft of the manuscript. KRK: Synthesis and spectroscopic characterization. MAS: Investigation, supervision, and approval of the final version of the manuscript.

Corresponding author

Correspondence to M. A. Sridhar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 289 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhileshwari, P., Kiran, K.R., Sridhar, M.A. et al. Crystal Structure Characterization, Interaction Energy Analysis and DFT Studies of 3-(4-Chlorophenyl)-N-phenylquinoxalin-2-amine. J Chem Crystallogr 53, 185–196 (2023). https://doi.org/10.1007/s10870-022-00959-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-022-00959-9

Keywords

Navigation