Skip to main content
Log in

Enhanced cellular osteogenic differentiation on Zn-containing bioglass incorporated TiO2 nanorod films

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Surface nanotopography and bioactive ions have been considered to play critical roles on the interactions of biomaterials with cells. In this study, a TiO2 nanorod film incorporated with Zn-containing bioactive glass (TiO2/Zn-BG) was prepared on tantalum substrate, trying to evaluate the synergistic effects of nanotopograpgy and bioactive ions to promote cellular osteogenic differentiation activity. The expression of osteogenic-related genes, ALP as well as the ECM mineralization on TiO2/Zn-BG film were significantly upregulated compared to that of the film without TiO2 nanorod nanostructure (Zn-BG) or without Zn (TiO2/BG). Moreover, a much low Zn2+ release level on TiO2/Zn-BG film was beneficial to promote the osteogenesis, which could be ascribed to that a semi-closed space established by TiO2 nanorods with adhered cells provided an appropriate micro-environment that facilitated Zn2+ adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Niinomi M, Nakai M, Hieda J. Acta Biomater. 2012;8:3888.

    Article  CAS  Google Scholar 

  2. Liu X, Chu PK, Ding C. Mater Sci Eng: R: Rep. 2004;47:49.

    Article  Google Scholar 

  3. Rieger E, Dupret-Bories A, Salou L, et al. Nanoscale. 2015;7:9908 https://doi.org/10.1039/c5nr01237f.

    Article  CAS  Google Scholar 

  4. Zhao L, Chu PK, Zhang Y, Wu Z. J Biomed Mater Res Part B Appl Biomater. 2009;91:470.

    Article  Google Scholar 

  5. Roach P, Eglin D, Rohde K, Perry CC. J Mater Sci: Mater Med. 2007;18:1263.

    CAS  Google Scholar 

  6. Puleo DA, Nanci A. Biomaterials. 1999;20:2311 https://doi.org/10.1016/S0142-9612(99)00160-X.

    Article  CAS  Google Scholar 

  7. Mihranyan A, Forsgren J, Strømme M, Engqvist H. Langmuir. 2009;25:1292 https://doi.org/10.1021/la803520k.

    Article  CAS  Google Scholar 

  8. Brohede U, Zhao S, Lindberg F, et al. Appl Surf Sci. 2009;255:7723 https://doi.org/10.1016/j.apsusc.2009.04.149.

    Article  CAS  Google Scholar 

  9. Piskounova S, Forsgren J, Brohede U, Engqvist H, Strømme M. J Biomed Mater Res Part B Appl Biomater. 2009;91B:780 https://doi.org/10.1002/jbm.b.31456.

    Article  CAS  Google Scholar 

  10. Forsgren J, Brohede U, Piskounova S, Mihranyan A, Larsson S. J Biomater Nanobiotechnology. 2011;2:149.

    Article  Google Scholar 

  11. D’Elia NL, Mathieu C, Hoemann CD, Laiuppa JA, Santillan GE, Messina PV. Nanoscale. 2015;7:18751 https://doi.org/10.1039/c5nr04850h.

    Article  Google Scholar 

  12. Luo M, Cheng K, Weng W, et al. Nanotechnology. 2009;20:215605.

    Article  Google Scholar 

  13. Dong W, Zhang T, Epstein J, et al. Chem Mater. 2007;19:4454 https://doi.org/10.1021/cm070845a.

    Article  CAS  Google Scholar 

  14. Zhao H, Dong W, Zheng Y, et al. Biomaterials. 2011;32:5837 https://doi.org/10.1016/j.biomaterials.2011.04.083.

    Article  CAS  Google Scholar 

  15. Dinan B, Gallego-Perez D, Lee H, Hansford D, Akbar SA. Ceram Int. 2013;39:5949 https://doi.org/10.1016/j.ceramint.2012.12.004.

    Article  CAS  Google Scholar 

  16. Park J, Bauer S, Pittrof A, Killian MS, Schmuki P, von der Mark K. Small. 2012;8:98.

    Article  CAS  Google Scholar 

  17. Dong L, Cheng K, Weng W, et al. Thin Solid Films. 2011;519:4634 https://doi.org/10.1016/j.tsf.2011.01.008.

    Article  CAS  Google Scholar 

  18. Song H-J, Kim J-W, Kook M-S, Moon W-J, Park Y-J. Appl Surf Sci. 2010;256:7056 https://doi.org/10.1016/j.apsusc.2010.05.024.

    Article  CAS  Google Scholar 

  19. Zhang X, Ferraris S, Prenesti E, Verné E. Appl Surf Sci. 2013;287:329.

    Article  CAS  Google Scholar 

  20. Zhang X, Ferraris S, Prenesti E, Verné E. Appl Surf Sci. 2013;287:341.

    Article  CAS  Google Scholar 

  21. Lee YT, Yu BY, Shao HJ, et al. J Biomater Sci, Polym Ed. 2011;22:2369 https://doi.org/10.1163/092050610x540431.

    Article  CAS  Google Scholar 

  22. Hasan J, Chatterjee K. Nanoscale. 2015;7:15568 https://doi.org/10.1039/c5nr04156b.

    Article  CAS  Google Scholar 

  23. Bettinger CJ, Langer R, Borenstein JT. Angew Chem Int Ed. 2009;48:5406.

    Article  CAS  Google Scholar 

  24. Liu Y, Cheng K, Weng W, et al. Thin Solid Films. 2013;544:285 https://doi.org/10.1016/j.tsf.2013.03.102.

    Article  CAS  Google Scholar 

  25. Zhao L, Mei S, Chu PK, Zhang Y, Wu Z. Biomaterials. 2010;31:5072 https://doi.org/10.1016/j.biomaterials.2010.03.014.

    Article  CAS  Google Scholar 

  26. Kubo K, Tsukimura N, Iwasa F, et al. Biomaterials. 2009;30:5319 https://doi.org/10.1016/j.biomaterials.2009.06.021.

    Article  CAS  Google Scholar 

  27. Taxt-Lamolle SF, Rubert M, Haugen HJ, Lyngstadaas SP, Ellingsen JE, Monjo M. Acta Biomater. 2010;6:1025 https://doi.org/10.1016/j.actbio.2009.09.014.

    Article  CAS  Google Scholar 

  28. Anselme K, Bigerelle M. Acta Biomater. 2005;1:211 https://doi.org/10.1016/j.actbio.2004.11.009.

    Article  CAS  Google Scholar 

  29. Hong Y, Yu M, Weng W, Cheng K, Wang H, Lin J. Biomaterials. 2013;34:11.

    Article  CAS  Google Scholar 

  30. Ikoba U, Peng H, Li H, Miller C, Yu C, Wang Q. Nanoscale. 2015;7:4291 https://doi.org/10.1039/c4nr07682f.

    Article  CAS  Google Scholar 

  31. Zhou J, Song B, Zhao G, Han G. Nanoscale Res Lett. 2012;7:1.

    Article  CAS  Google Scholar 

  32. Ge F, Lin J, Huang X, Cheng K, Wang H, Weng W. Thin Solid Films. 2015;584:2.

    Article  CAS  Google Scholar 

  33. Kong Z, Lin J, Yu M, et al. J Mater Chem B. 2014;2:4572.

    Article  CAS  Google Scholar 

  34. Wu C, Chang J. J Control Release. 2014;193:282.

    Article  CAS  Google Scholar 

  35. Tada S, Kitajima T, Ito Y. Int J Mol Sci. 2012;13:6053.

    Article  CAS  Google Scholar 

  36. Hoppe A, Mouriño V, Boccaccini AR. Biomater Sci. 2013;1:254.

    Article  CAS  Google Scholar 

  37. V Mouriño, JP Cattalini, AR Boccaccini. J R Soc Interface. 2012;9:401. https://doi.org/10.1098/rsif.2011.0611.

    Article  CAS  Google Scholar 

  38. Hoppe A, Güldal NS, Boccaccini AR. Biomaterials. 2011;32:2757 https://doi.org/10.1016/j.biomaterials.2011.01.004.

    Article  CAS  Google Scholar 

  39. Yamaguchi M. J Trace Elem Exp Med. 1998;11:119.

    Article  CAS  Google Scholar 

  40. Yamaguchi M, Weitzmann MN. Mol Cell Biochem. 2011;355:179.

    Article  CAS  Google Scholar 

  41. Kwun I-S, Cho Y-E, Lomeda R-AR, et al. Bone. 2010;46:732.

    Article  CAS  Google Scholar 

  42. Qiao Y, Zhang W, Tian P, et al. Biomaterials. 2014;35:6882 https://doi.org/10.1016/j.biomaterials.2014.04.101.

    Article  CAS  Google Scholar 

  43. Ito A, Kawamura H, Otsuka M, et al. Mater Sci Eng: C. 2002;22:21 https://doi.org/10.1016/S0928-4931(02)00108-X.

    Article  Google Scholar 

  44. Hu H, Zhang W, Qiao Y, Jiang X, Liu X, Ding C. Acta Biomater. 2012;8:904 https://doi.org/10.1016/j.actbio.2011.09.031.

    Article  CAS  Google Scholar 

  45. Miao S, Lin N, Cheng K, et al. J Am Ceram Soc. 2011;94:255.

    Article  CAS  Google Scholar 

  46. Zreiqat H, Ramaswamy Y, Wu C, et al. Biomaterials. 2010;31:3175 https://doi.org/10.1016/j.biomaterials.2010.01.024.

    Article  CAS  Google Scholar 

  47. Shruti S, Salinas AJ, Malavasi G, et al. J Mater Chem. 2012;22:13698.

    Article  CAS  Google Scholar 

  48. Zhang Y, Xia L, Zhai D, et al. Nanoscale. 2015;7:19207 https://doi.org/10.1039/c5nr05421d.

    Article  CAS  Google Scholar 

  49. Ge F, Yu MF, Lin J, et al. RSC Adv. 2016;6:67778 https://doi.org/10.1039/c6ra13081j.

    Article  CAS  Google Scholar 

  50. Yusa K, Yamamoto O, Fukuda M, Koyota S, Koizumi Y, Sugiyama T. Biochem Biophys Res Commun. 2011;412:273 https://doi.org/10.1016/j.bbrc.2011.07.082.

    Article  CAS  Google Scholar 

  51. Uthus E, Zaslavsky B. Biol Trace Elem Res. 2001;82:167 https://doi.org/10.1385/bter:82:1-3:167.

    Article  CAS  Google Scholar 

  52. Park KH, Choil Y, Yoon DS, et al. Stem Cells Dev. 2018. https://doi.org/10.1089/scd.2018.0023.

    Article  Google Scholar 

  53. An SF, Gong QM, Huang YH. Biol Trace Elem Res. 2017;175:112 https://doi.org/10.1007/s12011-016-0763-7.

    Article  CAS  Google Scholar 

  54. Iitsuka N, Hie M, Tsukamoto I. Eur J Pharmacol. 2013;714:41 https://doi.org/10.1016/j.ejphar.2013.05.020.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51472216, 51772273, 51502262), the 111 Project under Grant No. B16042, and the Postdoctoral Science Foundation of China (Grant No. 2017M621923).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjian Weng or Huiming Wang.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Chen, X., Cheng, K. et al. Enhanced cellular osteogenic differentiation on Zn-containing bioglass incorporated TiO2 nanorod films. J Mater Sci: Mater Med 29, 136 (2018). https://doi.org/10.1007/s10856-018-6141-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6141-6

Navigation