Skip to main content
Log in

The osteogenic differentiation of dog bone marrow mesenchymal stem cells in a thermo-sensitive injectable chitosan/collagen/β-glycerophosphate hydrogel: in vitro and in vivo

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Type I collagen was added to the composite chitosan solution in a ratio of 1:2 to build a physical cross-linked self-forming chitosan/collagen/β-GP hydrogel. Osteogenic properties of this novel injectable hydrogel were evaluated. Gelation time was about 8 min which offered enough time for handling a mixture containing cells and the subsequent injection. Scanning electronic microscopy (SEM) observations indicated good spreading of bone marrow mesenchymal stem cells (BMSCs) in this hydrogel scaffold. Mineral nodules were found in the dog-BMSCs inoculated hydrogel by SEM after 28 days. After subcutaneous injection into nude mouse dorsum for 4 weeks, partial bone formation was observed in the chitosan/collagen/β-GP hydrogel loaded with pre-osteodifferentiated dog-BMSCs, which indicated that chitosan/collagen/β-GP hydrogel composite could induce osteodifferentiation in BMSCs without exposure to a continual supply of external osteogenic factors. In conclusion, the novel chitosan/collagen/β-GP hydrogel composite should prove useful as a bone regeneration scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–51.

    Article  CAS  Google Scholar 

  2. Nguyen MK, Lee DS. Injectable biodegradable hydrogels. Macromol Biosci. 2010;10(6):563–79.

    Article  CAS  Google Scholar 

  3. VandeVord PJ, Matthew HW, De Silva SP, Mayton L, Wu B, Wooley PH. Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res. 2002;59(3):585–90.

    Article  CAS  Google Scholar 

  4. Freier T, Koh HS, Kazazian K, Shoichet MS. Controlling Cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials. 2005;26(29):5872–8.

    Article  CAS  Google Scholar 

  5. Choi BK, Kim KY, Yoo YJ, Oh SJ, Choi JH, Kim CY. In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. Int J Antimicrob Agents. 2001;18(6):553–7.

    Article  CAS  Google Scholar 

  6. Jiang T, Kumbar SG, Nair LS, Laurencin CT. Biologically active chitosan systems for tissue engineering and regenerative medicine. Curr Top Med Chem. 2008;8(4):354–64.

    Article  CAS  Google Scholar 

  7. Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, et al. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv. 2008;26:1–21.

    Article  CAS  Google Scholar 

  8. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani. A novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials. 2000;21:2155–61.

    Article  CAS  Google Scholar 

  9. Suh JK, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21:2589–98.

    Article  CAS  Google Scholar 

  10. Hoemann CD, Sun J, Le′gare′ A, McKee MD, Buschmann MD. Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthritis Cartilage. 2005;13(4):318–29.

    Article  CAS  Google Scholar 

  11. Chevrier A, Hoemann CD, Sun J, Buschmann MD. Chitosan-glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects. Osteoarthritis Cartilage. 2007;15:316–27.

    Article  CAS  Google Scholar 

  12. Richardson SM, Hughes N, Hunt JA, Freemont AJ, Hoyland JA. Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels. Biomaterials. 2008;29(1):85–93.

    Article  CAS  Google Scholar 

  13. Ruel-Gariépy E, Shive M, Bichara A, Berrada M, Le Garrec D, Chenite A, Leroux JC. A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm. 2004;57(1):53–63.

    Article  Google Scholar 

  14. Ruel-Gariepy E, Leclair G, Hildgen P, Gupta A, Leroux JC. Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. J Control Release. 2002;82:373.

    Article  CAS  Google Scholar 

  15. Di Martino A, Sittinger M, Risbud MV. A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26(30):5983–90.

    Article  CAS  Google Scholar 

  16. Cho MH, Kim KS, Ahn HH, Kim MS, Kim SH, Khang G, Lee B, Lee HB. Chitosan gel as an in situ-forming scaffold for rat bone marrow mesenchymal stem cells in vivo. Tissue Eng A. 2008;14(6):1099–108.

    Article  CAS  Google Scholar 

  17. Kim KS, Lee JH, Ahn HH, Lee JY, Khang G, Lee B, Lee HB, Kim MS. The osteogenic differentiation of rat muscle-derived stem cells in vivo within in situ-forming chitosan scaffolds. Biomaterials. 2008;29(33):4420–8.

    Article  CAS  Google Scholar 

  18. Wang L, Stegemann JP. Thermogelling chitosan and collagen composite hydrogels initiated with beta-glycerophosphate for bone tissue engineering. Biomaterials. 2010;31(14):3976–85.

    Article  CAS  Google Scholar 

  19. Guzmán-Morales J, El-Gabalawy H, Pham MH, Tran-Khanh N, McKee MD, Wu W, Centola M, Hoemann CD. Effect of chitosan particles and dexamethasone on human bone marrow stromal cell osteogenesis and angiogenic factor secretion. Bone. 2009;45:617–26.

    Article  Google Scholar 

  20. Yang XB, Bhatnagar RS, Li S, Oreffo ROC. Biomimetic collagen scaffolds for human bone cell growth and differentiation. Tissue Eng. 2004;10:1148–59.

    CAS  Google Scholar 

  21. Kundu AK, Putnam AJ. Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochem Biophys Res Commun. 2006;347:347–57.

    Article  CAS  Google Scholar 

  22. Jarry C, Chaput C, Chenite A, Renaud MA, Buschmann M, Leroux JC. Effects of steam sterilization on thermogelling chitosan-based gels. J Biomed Mater Res. 2001;58(1):127–35.

    Article  CAS  Google Scholar 

  23. Song K, Qiao M, Liu T, Jiang B, Macedo HM, Ma X, Cui Z. Preparation, fabrication and biocompatibility of novel injectable temperature-sensitive chitosan/glycerophosphate/collagen hydrogels. J Mater Sci Mater Med. 2010;21(10):2835–42.

    Article  CAS  Google Scholar 

  24. Ahmadi R, de Bruijn JD. Biocompatibility and gelation of chitosan–glycerol phosphate hydrogels. J Biomed Mater Res A. 2008;86:824–32.

    Google Scholar 

  25. Iliescu M, Hoemann CD, Shive MS, Chenite A, Buschmann MD. Ultrastructure of hybrid chitosan–glycerol phosphate blood clots by environmental scanning electron microscopy. Microsc Res Tech. 2008;71:236–47.

    Article  CAS  Google Scholar 

  26. Crompton KE, Prankerd RJ, Paganin DM, Scott TF, Horne MK, Finkelstein DI, Gross KA, Forsythe JS. Morphology and gelation of thermosensitive chitosan hydrogels. Biophys Chem. 2005;117(1):47–53.

    Article  CAS  Google Scholar 

  27. Rafat M, Li F, Fagerholm P, Lagali NS, Watsky MA, Munger R, Matsuura T, Griffith M. PEG-stabilized carbodiimide crosslinked collagen–chitosan hydrogels for corneal tissue engineering. Biomaterials. 2008;29(29):3960–72.

    Article  CAS  Google Scholar 

  28. Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials. 2003;24(26):4833–41.

    Article  CAS  Google Scholar 

  29. Kadler KE, Holmes DF, Trotter JA, Chapman JA. Collagen fibril formation. Biochem J. 1996;316(Pt 1):1–11.

    CAS  Google Scholar 

  30. Zhao L, Tang M, Weir MD, Detamore MS, Xu HH. Osteogenic media and rhBMP-2-induced differentiation of umbilical cord mesenchymal stem cells encapsulated in alginate microbeads and integrated in an injectable calcium phosphate–chitosan fibrous scaffold. Tissue Eng A. 2011;17(7–8):969–79.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was partly supported by the National Science Foundation of China (NSFC: 50901088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchen Liu.

Additional information

Bin Sun and Wei Ma have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, B., Ma, W., Su, F. et al. The osteogenic differentiation of dog bone marrow mesenchymal stem cells in a thermo-sensitive injectable chitosan/collagen/β-glycerophosphate hydrogel: in vitro and in vivo. J Mater Sci: Mater Med 22, 2111–2118 (2011). https://doi.org/10.1007/s10856-011-4386-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4386-4

Keywords

Navigation