Skip to main content
Log in

Facile synthesis of hybrid electrode by bimetallic MOFs/polyaniline composite for high-performance asymmetric supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An exciting new area of research is the development of metal–organic framework (MOF)-based materials that exhibit desirable conductivity, vigorous redox activity, and a large specific surface area that can be used as electrodes in supercapacitors. However, upon direct application to electrode materials in supercapacitors, the MOFs exhibit insufficient electrical conductivity and unsatisfactory stability, thereby impeding the advancement of their electrochemical characteristics. In this study, we extensively examine the hydrothermally synthesized nickel/copper metal–organic framework (MOF) and its composite material, comprising nickel/copper MOF and polyaniline. The composite material was prepared using a physical blending process for the purpose of developing a high energy density supercapattery device. The specific capacity of the hydrothermally synthesized nickel/copper–MOF/PANI is observed to be 651 C g−1 under an initial current density of 1 A g−1 in a three-electrode electrochemical system. Due to its exceptional electrochemical properties, the as-synthesized composite is employed to construct battery-type electrodes for practical device production. This is achieved by combining it with a highly porous (activated carbon) electrode, which is separated by a cellulose paper. The assembled NiCu–MOF/PANI//AC device exhibited a specific capacity of 220 C g−1, along with an energy density of 60 W h kg−1, when subjected to a current density of 1 A g−1. The constructed device exhibited improved cyclic stability, maintaining a remarkable capacitance retention rate of approximately 94.8% even after undergoing 15,000 cycles. The potential applications of this composite electrode encompass high-performance supercapacitors, flexible electronics, and wearable technological devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The original data needed to get the same results again cannot be shared right now because it is part of relevant work that is still going on.

References

  1. S. Zinatloo-Ajabshir, M.H. Esfahani, C.A. Marjerrison, J. Greedan, M. Behzad, Enhanced electrochemical hydrogen storage performance of lanthanum zirconium oxide ceramic microstructures synthesized by a simple approach. Ceram. Int. 49, 37415–37422 (2023). https://doi.org/10.1016/j.ceramint.2023.09.067

    Article  CAS  Google Scholar 

  2. A. Sobhani, CuMn2O4/Mn2O3 micro composites: Sol- gel synthesis in the presence of sucrose and investigation of their photocatalytic properties. Arab. J. Chem. 16, 105201 (2023). https://doi.org/10.1016/j.arabjc.2023.105201

    Article  CAS  Google Scholar 

  3. S. Zinatloo-Ajabshir, M.S. Morassaei, O. Amiri, M. Salavati-Niasari, Green synthesis of dysprosium stannate nanoparticles using Ficus carica extract as photocatalyst for the degradation of organic pollutants under visible irradiation. Ceram. Int. 46, 6095–6107 (2020). https://doi.org/10.1016/j.ceramint.2019.11.072

    Article  CAS  Google Scholar 

  4. S. Zinatloo-Ajabshir, H. Mahmoudi-Moghaddam, M. Amiri, H. Akbari Javar, A facile green fabrication of sponge-like Pr2Ce2O7 nanostructure using sucrose for electrochemical quantification of anti-parkinson drug pramipexole. Microchem. J. 195, 109480 (2023). https://doi.org/10.1016/j.microc.2023.109480

    Article  CAS  Google Scholar 

  5. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation of magnetically retrievable CoFe2O4@SiO2@Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Compos. Part. B: Eng. 174, 106930 (2019). https://doi.org/10.1016/j.compositesb.2019.106930

    Article  CAS  Google Scholar 

  6. S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, Eco-friendly synthesis of Nd2Sn2O7–based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Compos. Part. B: Eng. 167, 643–653 (2019). https://doi.org/10.1016/j.compositesb.2019.03.045

    Article  CAS  Google Scholar 

  7. Z. Gan, N. Song, H. Zhang, Z. Ma, Y. Wang, C. Chen, One-step electrofabrication of reduced graphene oxide/poly(N-methylthionine) composite film for high performance supercapacitors. J. Electrochem. Soc. (2020). https://doi.org/10.1149/1945-7111/ab8c82

    Article  Google Scholar 

  8. S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Facile hydrothermal and novel preparation of nanostructured Ho2O3 for photodegradation of eriochrome black T dye as water pollutant. Adv. Powder Technol. 28, 747–754 (2017). https://doi.org/10.1016/j.apt.2016.11.022

    Article  CAS  Google Scholar 

  9. A.S. Lemine, M.M. Zagho, T.M. Altahtamouni, N. Bensalah, Graphene a promising electrode material for supercapacitors—a review. Int. J. Energy Res. 42, 4284–4300 (2018). https://doi.org/10.1002/er.4170

    Article  CAS  Google Scholar 

  10. R.S. Kate, S.A. Khalate, R.J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review. J. Alloys Compd. 734, 89–111 (2018). https://doi.org/10.1016/j.jallcom.2017.10.262

    Article  CAS  Google Scholar 

  11. B.K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical supercapacitors for energy storage and conversion. Handb. Clean Energy Syst. (2015). https://doi.org/10.1002/9781118991978.hces112

    Article  Google Scholar 

  12. N. Siraj, S. Macchi, B. Berry, T. Viswanathan, Metal-free carbon-based supercapacitors—a comprehensive review. Electrochem (2020). https://doi.org/10.3390/electrochem1040028

    Article  Google Scholar 

  13. C. Wu, J. Zhu, B. Zhang, H. Shi, H. Zhang, S. Yuan, Y. Yin, G. Chen, C. Chen, Efficient pH-universal aqueous supercapacitors enabled by an azure C-decorated N-doped graphene aerogel. J. Colloid Interface Sci. 650, 1871–1880 (2023). https://doi.org/10.1016/j.jcis.2023.07.142

    Article  CAS  PubMed  Google Scholar 

  14. H.M. Fahad, R. Ahmad, F. Shaheen, S.M. Ali, Q. Huang, Architecture of hybrid electrode by the composition of CoMoO4 /rGO/PANI for asymmetric supercapacitors. Electrochim. Acta. 471, 143393 (2023). https://doi.org/10.1016/j.electacta.2023.143393

    Article  CAS  Google Scholar 

  15. H.M. Fahad, F. Shaheen, R. Ahmad, M.H. Aziz, A.A. Ifseisi, Q. Huang, A 3D hydrangea-like NiMoO4/rGO/PANI hybrid composite for high performance asymmetric supercapacitor. Electrochim. Acta. 477, 143756 (2024). https://doi.org/10.1016/j.electacta.2023.143756

    Article  CAS  Google Scholar 

  16. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016). https://doi.org/10.1016/j.rser.2015.12.249

    Article  CAS  Google Scholar 

  17. M. Vangari, T. Pryor, L. Jiang, Review of materials and fabrication methods. J. Energy Eng. 139, 72–79 (2013). https://doi.org/10.1061/(ASCE)EY.1943-7897.0000102

    Article  Google Scholar 

  18. X. Wang, H. Xia, J. Gao, B. Shi, Y. Fang, M. Shao, Enhanced cycle performance of ultraflexible asymmetric supercapacitors based on a hierarchical MnO2@NiMoO4 core–shell nanostructure and porous carbon. J. Mater. Chem. A 4, 18181–18187 (2016). https://doi.org/10.1039/C6TA07836B

    Article  CAS  Google Scholar 

  19. T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, Y. Li, Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Lett. 14, 2522–2527 (2014). https://doi.org/10.1021/nl500255v

    Article  CAS  PubMed  Google Scholar 

  20. F. Liu, C. Wu, Y. Dong, C. Zhu, C. Chen, Poly(azure C)-coated CoFe prussian blue analogue nanocubes for high-energy asymmetric supercapacitors. J. Colloid Interface Sci. 628, 682–690 (2022). https://doi.org/10.1016/j.jcis.2022.08.106

    Article  CAS  PubMed  Google Scholar 

  21. C. Zhu, Y. He, Y. Liu, N. Kazantseva, P. Saha, Q. Cheng, ZnO@MOF@PANI core–shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes. J. Energy Chem. 35, 124–131 (2019). https://doi.org/10.1016/j.jechem.2018.11.006

    Article  Google Scholar 

  22. Z. Yang, A. Qiu, J. Ma, M. Chen, Conducting α-Fe2O3 nanorod/polyaniline/CNT gel framework for high performance anodes towards supercapacitors. Compos. Sci. Technol. 156, 231–237 (2018). https://doi.org/10.1016/j.compscitech.2018.01.012

    Article  CAS  Google Scholar 

  23. A. Xie, F. Tao, T. Li, L. Wang, S. Chen, S. Luo, C. Yao, Graphene-cerium oxide/porous polyaniline composite as a novel electrode material for supercapacitor. Electrochim. Acta 261, 314–322 (2018). https://doi.org/10.1016/j.electacta.2017.12.165

    Article  CAS  Google Scholar 

  24. M.S. Rahmanifar, H. Hesari, A. Noori, M.Y. Masoomi, A. Morsali, M.F. Mousavi, A dual Ni/Co-MOF-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode material. Electrochim. Acta. 275, 76–86 (2018). https://doi.org/10.1016/j.electacta.2018.04.130

    Article  CAS  Google Scholar 

  25. Y. Huang, J. Zhou, N. Gao, Z. Yin, H. Zhou, X. Yang, Y. Kuang, Synthesis of 3D reduced graphene oxide/unzipped carbon nanotubes/polyaniline composite for high-performance supercapacitors. Electrochim. Acta. 269, 649–656 (2018). https://doi.org/10.1016/j.electacta.2018.03.071

    Article  CAS  Google Scholar 

  26. H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science (2013). https://doi.org/10.1126/science.1230444

    Article  PubMed  Google Scholar 

  27. B. Xu, H. Zhang, H. Mei, D. Sun, Recent progress in metal-organic framework-based supercapacitor electrode materials. Coord. Chem. Rev. 420, 213438 (2020). https://doi.org/10.1016/j.ccr.2020.213438

    Article  CAS  Google Scholar 

  28. Y. Jiao, G. Chen, D. Chen, J. Pei, Y. Hu, Bimetal-organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage. J. Mater. Chem. A 5, 23744–23752 (2017). https://doi.org/10.1039/C7TA07464F

    Article  CAS  Google Scholar 

  29. Y. Zhou, Z. Mao, W. Wang, Z. Yang, X. Liu, In-situ fabrication of graphene oxide hybrid Ni-based metal–organic framework (Ni–MOFs@GO) with ultrahigh capacitance as electrochemical pseudocapacitor materials. ACS Appl. Mater. Interfaces 8, 28904–28916 (2016). https://doi.org/10.1021/acsami.6b10640

    Article  CAS  PubMed  Google Scholar 

  30. Y. Jiao, J. Pei, C. Yan, D. Chen, Y. Hu, G. Chen, Layered nickel metal–organic framework for high performance alkaline battery-supercapacitor hybrid devices. J. Mater. Chem. A 4, 13344–13351 (2016). https://doi.org/10.1039/C6TA05384J

    Article  CAS  Google Scholar 

  31. H. Jasuja, Y. Jiao, N.C. Burtch, Y. Huang, K.S. Walton, Synthesis of cobalt-, nickel-, copper-, and zinc-based, water-stable, pillared metal–organic frameworks. Langmuir 30, 14300–14307 (2014). https://doi.org/10.1021/la503269f

    Article  CAS  PubMed  Google Scholar 

  32. Y. Gong, J. Li, P.-G. Jiang, Q.-F. Li, J.-H. Lin, Novel metal(ii) coordination polymers based on N,N′-bis-(4-pyridyl)phthalamide as supercapacitor electrode materials in an aqueous electrolyte. Dalton Trans. 42, 1603–1611 (2013). https://doi.org/10.1039/C2DT31965A

    Article  CAS  PubMed  Google Scholar 

  33. D.Y. Lee, S.J. Yoon, N.K. Shrestha, S.-H. Lee, H. Ahn, S.-H. Han, Unusual energy storage and charge retention in co-based metal–organic-frameworks. Microporous Mesoporous Mater. 153, 163–165 (2012). https://doi.org/10.1016/j.micromeso.2011.12.040

    Article  CAS  Google Scholar 

  34. M. Du, M. Chen, X.-G. Yang, J. Wen, X. Wang, S.-M. Fang, C.-S. Liu, A channel-type mesoporous in(iii)–carboxylate coordination framework with high physicochemical stability for use as an electrode material in supercapacitors. J. Mater. Chem. A 2, 9828–9834 (2014). https://doi.org/10.1039/C4TA00963K

    Article  CAS  Google Scholar 

  35. K.M. Choi, H.M. Jeong, J.H. Park, Y.-B. Zhang, J.K. Kang, O.M. Yaghi, Supercapacitors of nanocrystalline metal–organic frameworks. ACS Nano 8, 7451–7457 (2014). https://doi.org/10.1021/nn5027092

    Article  CAS  PubMed  Google Scholar 

  36. N. Campagnol, R. Romero-Vara, W. Deleu, L. Stappers, K. Binnemans, D.E. De Vos, J. Fransaer, A hybrid supercapacitor based on porous carbon and the metal-organic framework MIL-100(Fe). ChemElectroChem 1, 1182–1188 (2014). https://doi.org/10.1002/celc.201402022

    Article  CAS  Google Scholar 

  37. D. Sheberla, J.C. Bachman, J.S. Elias, C.-J. Sun, Y. Shao-Horn, M. Dincă, Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–224 (2017). https://doi.org/10.1038/nmat4766

    Article  CAS  PubMed  Google Scholar 

  38. S. Gao, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. He, Facile synthesis of cuboid Ni-MOF for high-performance supercapacitors. J. Mater. Sci. 53, 6807–6818 (2018). https://doi.org/10.1007/s10853-018-2005-1

    Article  CAS  Google Scholar 

  39. Y. Yan, P. Gu, S. Zheng, M. Zheng, H. Pang, H. Xue, Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J. Mater. Chem. A 4, 19078–19085 (2016). https://doi.org/10.1039/C6TA08331E

    Article  CAS  Google Scholar 

  40. X. Zhang, N. Qu, S. Yang, Q. Fan, D. Lei, A. Liu, X. Chen, Shape-controlled synthesis of Ni-based metal-organic frameworks with albizia flower-like spheres@nanosheets structure for high performance supercapacitors. J. Colloid Interface Sci. 575, 347–355 (2020). https://doi.org/10.1016/j.jcis.2020.04.127

    Article  CAS  PubMed  Google Scholar 

  41. S. Liu, Y. Qiu, Y. Liu, W. Zhang, Z. Dai, D. Srivastava, A. Kumar, Y. Pan, J. Liu, Recent advances in bimetallic metal–organic frameworks (BMOFs): synthesis, applications and challenges. New J. Chem. 46, 13818–13837 (2022). https://doi.org/10.1039/D2NJ01994A

    Article  CAS  Google Scholar 

  42. M. Duan, L. Jiang, G. Zeng, D. Wang, W. Tang, J. Liang, H. Wang, D. He, Z. Liu, L. Tang, Bimetallic nanoparticles/metal-organic frameworks: synthesis, applications and challenges. Appl. Mater. Today. 19, 100564 (2020). https://doi.org/10.1016/j.apmt.2020.100564

    Article  Google Scholar 

  43. A. Zhang, H. Zong, H. Fu, L. Wang, X. Cao, Y. Zhong, B. Liu, J. Liu, Controllable synthesis of nickel doped hierarchical zinc MOF with tunable morphologies for enhanced supercapability. J. Colloid Interface Sci. 618, 375–385 (2022). https://doi.org/10.1016/j.jcis.2022.03.062

    Article  CAS  PubMed  Google Scholar 

  44. Y. Zhang, S. Yuan, X. Feng, H. Li, J. Zhou, B. Wang, Preparation of nanofibrous metal–organic framework filters for efficient air pollution control. J. Am. Chem. Soc. 138, 5785–5788 (2016). https://doi.org/10.1021/jacs.6b02553

    Article  CAS  PubMed  Google Scholar 

  45. M.H. Aziz, A. Khan, H.M. Fahad, F. Shaheen, R. Ahmad, K. Mehboob, Q. Huang, NiZrSe3/rGO modulated porous architecture for hybrid featured asymmetric supercapacitors. J. Energy Storage. 63, 106982 (2023). https://doi.org/10.1016/j.est.2023.106982

    Article  Google Scholar 

  46. B. Huang, D. Yao, J. Yuan, Y. Tao, Y. Yin, G. He, H. Chen, Hydrangea-like NiMoO4–Ag/rGO as battery-type electrode for hybrid supercapacitors with superior stability. J. Colloid Interface Sci. 606, 1652–1661 (2022). https://doi.org/10.1016/j.jcis.2021.08.140

    Article  CAS  PubMed  Google Scholar 

  47. C. Li, Y. Shi, F. Yu, Q. Chu, X. Sun, Preparation of metal-organic framework Cu+/Ni-MOF catalyst with enhanced catalytic activity for selective catalytic reduction of NOx. Ferroelectrics. 565, 26–34 (2020). https://doi.org/10.1080/00150193.2020.1761715

    Article  CAS  Google Scholar 

  48. B. Dey, M.W. Ahmad, G. Sarkhel, D.-J. Yang, A. Choudhury, Fabrication of porous nickel (II)-based MOF@carbon nanofiber hybrid mat for high-performance non-enzymatic glucose sensing. Mater. Sci. Semiconduct. Process. 142, 106500 (2022). https://doi.org/10.1016/j.mssp.2022.106500

    Article  CAS  Google Scholar 

  49. G. Guo, Direct fabrication of mixed metal–organic frameworks (Ni/Cu-MOF) and C@NiCu2O4 onto ni foam as binder-free high performance electrode for supercapacitors. J. Mater. Sci.: Mater. Electron. 32, 16287–16301 (2021). https://doi.org/10.1007/s10854-021-06177-x

    Article  CAS  Google Scholar 

  50. W. Pan, Z. Zheng, X. Wu, J. Gao, Y. Liu, Q. Yuan, W. Gan, Facile synthesis of 2D/3D hierarchical NiCu bimetallic MOF for non-enzymatic glucose sensor. Microchem. J. 170, 106652 (2021). https://doi.org/10.1016/j.microc.2021.106652

    Article  CAS  Google Scholar 

  51. A. Mostafaei, A. Zolriasatein, Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Progress Nat. Sci.: Mater. Int. 22, 273–280 (2012). https://doi.org/10.1016/j.pnsc.2012.07.002

    Article  Google Scholar 

  52. D. Jiang, C. Wei, Z. Zhu, X. Xu, M. Lu, G. Wang, Preparation of flower-like nickel-based bimetallic organic framework electrodes for high-efficiency hybrid supercapacitors. Crystals (2021). https://doi.org/10.3390/cryst11111425

    Article  Google Scholar 

  53. H.S.H. Mohamed, L. Wu, C.-F. Li, Z.-Y. Hu, J. Liu, Z. Deng, L.-H. Chen, Y. Li, B.-L. Su, In-situ growing mesoporous CuO/O-doped g-C3N4 nanospheres for highly enhanced lithium storage. ACS Appl. Mater. Interfaces 11, 32957–32968 (2019). https://doi.org/10.1021/acsami.9b10171

    Article  CAS  PubMed  Google Scholar 

  54. Z. Neisi, Z. Ansari-Asl, A.S. Dezfuli, Polyaniline/Cu(II) metal-organic frameworks composite for high performance supercapacitor electrode. J. Inorg. Organomet. Polym Mater. 29, 1838–1847 (2019). https://doi.org/10.1007/s10904-019-01145-9

    Article  CAS  Google Scholar 

  55. S. Hu, J. Yan, X. Huang, L. Guo, Z. Lin, F. Luo, B. Qiu, K.-Y. Wong, G. Chen, A sensing platform for hypoxanthine detection based on amino-functionalized metal organic framework nanosheet with peroxidase mimic and fluorescence properties. Sens. Actuators B 267, 312–319 (2018). https://doi.org/10.1016/j.snb.2018.04.055

    Article  CAS  Google Scholar 

  56. J. Wei, Y. Hu, Y. Liang, B. Kong, Z. Zheng, J. Zhang, Y. Zhao, H.J.J. .o.M, Graphene oxide/core–shell structured metal–organic framework nano-sandwiches and their derived cobalt/N-doped carbon nanosheets for oxygen reduction reactions. J.Mater. Chem. A 5, 10182–10189 (2017)

    Article  CAS  Google Scholar 

  57. A. Crake, K.C. Christoforidis, A. Kafizas, S. Zafeiratos, C. Petit, CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV–Vis irradiation. Appl. Catal. B 210, 131–140 (2017). https://doi.org/10.1016/j.apcatb.2017.03.039

    Article  CAS  Google Scholar 

  58. C. Shan, X. Zhang, S. Ma, X. Xia, Y. Shi, J. Yang, Preparation and application of bimetallic mixed ligand MOF photocatalytic materials. Colloids Surf., a 636, 128108 (2022). https://doi.org/10.1016/j.colsurfa.2021.128108

    Article  CAS  Google Scholar 

  59. Z. Chen, J. Liang, X. Xu, G. He, H. Chen, CdS–Bi2MoO6/RGO nanocomposites for efficient degradation of ciprofloxacin under visible light. J. Mater. Sci. 55, 6065–6077 (2020). https://doi.org/10.1007/s10853-020-04413-z

    Article  CAS  Google Scholar 

  60. H.M. Fahad, A. Asif, A simple FPP device for pulsed measurement of sheet resistance. Instrum. Exp. Tech. 64, 898–904 (2021). https://doi.org/10.1134/S0020441221060038

    Article  Google Scholar 

  61. Y. Li, S. Zhang, M. Ma, X. Mu, Y. Zhang, J. Du, Q. Hu, B. Huang, X. Hua, G. Liu, E. Xie, Z. Zhang, Manganese-doped nickel molybdate nanostructures for high-performance asymmetric supercapacitors. Chem. Eng. J. 372, 452–461 (2019). https://doi.org/10.1016/j.cej.2019.04.167

    Article  CAS  Google Scholar 

  62. M.Z. Iqbal, M.M. Faisal, M. Sulman, S.R. Ali, A.M. Afzal, M.A. Kamran, T. Alharbi, Capacitive and diffusive contribution in strontium phosphide–polyaniline based supercapattery. J. Energy Storage 29, 101324 (2020). https://doi.org/10.1016/j.est.2020.101324

    Article  Google Scholar 

  63. A. Cymann-Sachajdak, M. Graczyk-Zajac, G. Trykowski, M. Wilamowska-Zawłocka, Understanding the capacitance of thin composite films based on conducting polymer and carbon nanostructures in aqueous electrolytes. Electrochim. Acta. 383, 138356 (2021). https://doi.org/10.1016/j.electacta.2021.138356

    Article  CAS  Google Scholar 

  64. M.B. Poudel, H.J. Kim, Confinement of Zn–Mg–Al-layered double hydroxide and α-Fe2O3 nanorods on hollow porous carbon nanofibers: a free-standing electrode for solid-state symmetric supercapacitors. Chem. Eng. J. 429, 132345 (2022). https://doi.org/10.1016/j.cej.2021.132345

    Article  CAS  Google Scholar 

  65. D. Mohanadas, M.A.A. Mohd Abdah, N.H.N. Azman, J. Abdullah, Y. Sulaiman, A promising negative electrode of asymmetric supercapacitor fabricated by incorporating copper-based metal-organic framework and reduced graphene oxide. Int. J. Hydrog. Energy. 46, 35385–35396 (2021). https://doi.org/10.1016/j.ijhydene.2021.08.081

    Article  CAS  Google Scholar 

  66. A. Choudhury, S. Anand, A. Syed, A.H. Bahkali, L.S. Wong, K.B. Yoon, D.-J. Yang, M.W. Ahmad, Synthesis of 2D bi-metallic Zn/Cu metal-organic framework integrated graphene nanocomposites for all-solid-state asymmetric supercapacitors. Diam. Relat. Mater. 141, 110613 (2024). https://doi.org/10.1016/j.diamond.2023.110613

    Article  CAS  Google Scholar 

  67. D.M. Teffu, M.D. Makhafola, M.M. Ndipingwi, E. Makhado, M.J. Hato, E.I. Iwuoha, K.D. Modibane, K. Makgopa, Interrogation of electrochemical performance of reduced graphene oxide/metal-organic framework hybrid for asymmetric supercabattery application. Electroanalysis 32, 2827–2837 (2020). https://doi.org/10.1002/elan.202060303

    Article  CAS  Google Scholar 

  68. N. Wu, H. Wu, J. Zhang, Y. Zhang, D. Cao, L. Bai, T. Hu, Cu2O/Cu@C nanosheets derived from one novel Cu (II) metal-organic framework for high performance supercapacitors. J. Alloys Compd. 856, 157466 (2021). https://doi.org/10.1016/j.jallcom.2020.157466

    Article  CAS  Google Scholar 

  69. D. Tian, Y. Ao, W. Li, J. Xu, C. Wang, General fabrication of metal-organic frameworks on electrospun modified carbon nanofibers for high-performance asymmetric supercapacitors. J. Colloid Interface Sci. 603, 199–209 (2021). https://doi.org/10.1016/j.jcis.2021.05.138

    Article  CAS  PubMed  Google Scholar 

  70. X. Cao, L. Cui, B. Liu, Y. Liu, D. Jia, W. Yang, J.M. Razal, J. Liu, Reverse synthesis of star anise-like cobalt doped Cu-MOF/Cu2 + 1O hybrid materials based on a Cu(OH)2 precursor for high performance supercapacitors. J. Mater. Chem. A 7, 3815–3827 (2019). https://doi.org/10.1039/C8TA11396C

    Article  CAS  Google Scholar 

  71. C. Chen, M.-K. Wu, K. Tao, J.-J. Zhou, Y.-L. Li, X. Han, L. Han, Formation of bimetallic metal–organic framework nanosheets and their derived porous nickel–cobalt sulfides for supercapacitors. Dalton Trans. 47, 5639–5645 (2018). https://doi.org/10.1039/C8DT00464A

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Muhammad Imran Bashir: Writing—original draft, Investigation, Formal analysis, Data curation, and Conceptualization. Faiza Anjum: Supervision, Resources, Investigation, and Conceptualization. Muhammad Imran: Visualization, Supervision, Resources, and Investigation. Hafiz Muhammad Fahad: Conceptualization, Data curation, and Validation. Falak Sher: Formal analysis, Methodology, Conceptualization, Investigation, and Writing—review and editing.

Corresponding author

Correspondence to Muhammad Imran Bashir.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not involve any animal or human subject experiment.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 612.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, M.I., Anjum, F., Imran, M. et al. Facile synthesis of hybrid electrode by bimetallic MOFs/polyaniline composite for high-performance asymmetric supercapacitors. J Mater Sci: Mater Electron 35, 742 (2024). https://doi.org/10.1007/s10854-024-12496-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12496-6

Navigation