Skip to main content

Advertisement

Log in

Compound additives and stress study of EDTA-2Na chemical copper plating system in printed circuit boards

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the processing technology of printed circuit boards, the common electroless copper plating technology of ethylenediaminetetraacetic acid disodium (EDTA-2Na) has the problems of large surface stress, uneven crystal particles, and large surface roughness of the copper plating layer. To remedy the above shortcomings and meet the current requirements for copper interconnects in printed circuit boards (PCBs), the present study has investigated a chemical copper plating system that combines a high deposition rate with low stress. An electroless copper plating was then performed on a polyacrylonitrile-butadiene-styrene (ABS) plastic resin plate with 2,6-diaminopyridine (2,6-DAP), 2,2-bipyridine, sodium hydroxyethyl sulfonate (SHES) and NiSO4·6H2O as supplementary additives. By using scanning electron microscopy (SEM), electrochemical, atomic force microscopy (AFM), and X-ray diffraction (XRD) analyses, it has been shown that the average surface roughness Ra became reduced from 202 nm to 76.1 nm when using additives in the chemical copper plating process. Also, the internal stresses of the deposited copper layer on the (220) and (311) planes of a crystalline copper layer decreased from − 70.48 and − 53.03 to − 27.31 and − 27.16 MPa, respectively. The composite additive improved the quality of the copper layer of the EDTA-2Na-based chemical copper plating system, increasing the practical range of industrial applications and facilitating the subsequent application of higher-precision processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available, but are available from the corresponding author on reasonable request.

References

  1. I. Volov, X. Sun, G. Gadikota, P. Shi, A.C. West, Electrochim. Acta. 89, 792–797 (2013). https://doi.org/10.1016/j.electacta.2012.11.102

    Article  CAS  Google Scholar 

  2. A.A. Kosarev, A.A. Kalinkina, S.S. Kruglikov, T.A. Vagramyan, V.E. Kasatkin, J. Solid State Electrochem. 25, 1491–1501 (2021). https://doi.org/10.1007/s10008-021-04922-0

    Article  CAS  Google Scholar 

  3. G. Frost, L. Ladani, J. Electron. Mater. 49, 1387–1395 (2020). https://doi.org/10.1007/s11664-019-07826-y

    Article  CAS  Google Scholar 

  4. Z. Zhang, M.-C. Hsieh, R. Liu, J. Yeom, A. Suetake, H. Yoshida, C. Chen, J. Kang, H. Honma, Y. Kitahara, T. Matsunami, K. Otsuka, K. Suganuma, Microelectron. Reliab. 138, 114707 (2022). https://doi.org/10.1016/j.microrel.2022.114707

    Article  CAS  Google Scholar 

  5. S. Ghosh, Thin Solid Films. 669, 641–658 (2019). https://doi.org/10.1016/j.tsf.2018.11.016

    Article  CAS  Google Scholar 

  6. S. Jayalakshmi, R. Venkatesan, S. Deepa, A.A. Vetcher, S. Ansar, S.-C. Kim, Sci. Rep. 13, 11062 (2023). https://doi.org/10.1038/s41598-023-38115-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. T. Collet, B. Wouters, N. Hallemans, K. Ramharter, J. Lataire, A. Hubin, Electrochim. Acta. 437, 141412 (2023). https://doi.org/10.1016/j.electacta.2022.141412

    Article  CAS  Google Scholar 

  8. C.-H. Chiang, C.-C. Lin, C.-C. Hu, J. Electrochem. Soc. 168, 032505 (2021). https://doi.org/10.1149/1945-7111/abec56

    Article  CAS  Google Scholar 

  9. Z. Yu, J.H. Wang, Y. Li, Y. Bai, Polym. Eng. Sci. 60, 860–871 (2020). https://doi.org/10.1002/pen.25345

    Article  CAS  Google Scholar 

  10. X. Liang, X. Ren, R. He, T. Ma, A. Liu, New. J. Chem. 45, 19655–19659 (2021). https://doi.org/10.1039/D1NJ03503G

    Article  CAS  Google Scholar 

  11. D.-A. Duca, M.L. Dan, N. Vaszilcsin, Int. J. Environ. Res. Public. Health. 18, 9476 (2021). https://doi.org/10.3390/ijerph18189476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Z. Lai, C. Wang, Y. Huang, Y. Chen, S. Wang, Y. Hong, G. Zhou, W. He, X. Su, Y. Sun, Y. Tao, X. Lu, Mater. Today Commun. 24, 100973 (2020). https://doi.org/10.1016/j.mtcomm.2020.100973

    Article  CAS  Google Scholar 

  13. S. Zhao, K. Pang, X. Wang, N. Xiao, J. Electrochem. Soc. 167, 112502 (2020). https://doi.org/10.1149/1945-7111/aba00c

    Article  CAS  Google Scholar 

  14. Z. Mao, Y. Wu, X.-Y. Ma, L. Zheng, X.-G. Zhang, W.-B. Cai, J. Phys. Chem. Lett. 13, 9079–9084 (2022). https://doi.org/10.1021/acs.jpclett.2c02541

    Article  CAS  PubMed  Google Scholar 

  15. F. Wang, Y. Le, Sci. Rep. 11, 12108 (2021). https://doi.org/10.1038/s41598-021-91318-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. H. Lee, S.-T. Tsai, P.-H. Wu, W.-P. Dow, C.-M. Chen, Mater. Charact. 147, 57–63 (2019). https://doi.org/10.1016/j.matchar.2018.10.029

    Article  CAS  Google Scholar 

  17. P. Ren, M. An, P. Yang, J. Zhang, J. Electroanal. Chem. 898, 115624 (2021). https://doi.org/10.1016/j.jelechem.2021.115624

    Article  CAS  Google Scholar 

  18. X. Teng, Z. Tao, Z. Long, G. Liu, X. Tao, RSC Adv. 12, 16153–16164 (2022). https://doi.org/10.1039/d2ra02274e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. A.B. Abdel-Aziz, A.A. El-Zomrawy, M.M.B. El-Sabbah, I.M. Ghayad, J. Mater. Res. Technol. 18, 2166–2174 (2022). https://doi.org/10.1016/j.jmrt.2022.03.004

    Article  CAS  Google Scholar 

  20. L. Fabbri, W. Giurlani, G. Mencherini, A. De Luca, M. Passaponti, E. Piciollo, C. Fontanesi, A. Caneschi, M. Innocenti, Coatings. 12, 376 (2022). https://doi.org/10.3390/coatings12030376

    Article  CAS  Google Scholar 

  21. Z. Li, B. Tan, J. Luo, J. Qin, G. Yang, C. Cui, L. Pan, Electrochim. Acta. 401, 139445 (2022). https://doi.org/10.1016/j.electacta.2021.139445

    Article  CAS  Google Scholar 

  22. D.A. Brown, A.R. MacDonald, E.A. McCarron, J. Appl. Electrochem. 51, 795–802 (2021). https://doi.org/10.1007/s10800-021-01535-3

    Article  CAS  Google Scholar 

  23. Z. Tao, Z. Long, L. Tengxu, G. Liu, X. Tao, J. Electroanal. Chem. 918, 116456 (2022). https://doi.org/10.1016/j.jelechem.2022.116456

    Article  CAS  Google Scholar 

  24. M.D.G. De Luna, J.A. Capito, A.C. Vilando, M.-C. Lu, Sep. Purif. Technol. 253, 117460 (2020). https://doi.org/10.1016/j.seppur.2020.117460

    Article  CAS  Google Scholar 

  25. Z. Feng, D. Li, Q. Sun, L. Wang, P. Xing, M. An, J. Alloys Compd. 765, 1026–1034 (2018). https://doi.org/10.1016/j.jallcom.2018.06.300

    Article  CAS  Google Scholar 

  26. X. Li, X. Liu, K. Hui, W. Zhao, W. Zhao, H. Chen, Q. Zhu, H. Zhu, Z. Wang, Mater. Sci. Engineering: B 298, 116876 (2023). https://doi.org/10.1016/j.mseb.2023.116876

    Article  CAS  Google Scholar 

  27. N. Fatouros, D. Krulic, J. Electroanal. Chem. 817, 167–175 (2018). https://doi.org/10.1016/j.jelechem.2018.04.004

    Article  CAS  Google Scholar 

  28. R. Brüning, B. Muir, E. McCalla, É. Lempereur, F. Brüning, J. Etzkorn, Thin Solid Films. 519, 4377–4383 (2011). https://doi.org/10.1016/j.tsf.2011.02.016

    Article  CAS  Google Scholar 

  29. Y. Xu, D. Wang, M. Sheng, H. Wang, Surf. Eng. 39, 769–779 (2023). https://doi.org/10.1080/02670844.2023.2257855

    Article  CAS  Google Scholar 

  30. M. Yu, J. Zhang, D. Li, Q. Meng, W. Li, Surf. Coat. Technol. 201, 1243–1249 (2006). https://doi.org/10.1016/j.surfcoat.2006.01.047

    Article  CAS  Google Scholar 

  31. W.-E. Fu, Y.-Q. Chang, B.-C. He, C.-L. Wu, Thin Solid Films. 544, 201–205 (2013). https://doi.org/10.1016/j.tsf.2013.03.121

    Article  CAS  Google Scholar 

  32. S. Nakahara, Y. Okinaka, J. Electrochem. Soc. 136, 1892–1895 (1989). https://doi.org/10.1149/1.2097074

    Article  CAS  Google Scholar 

  33. W. Wu, J. Huang, J. Näther, Surf. Coat. Tech. 424, 127648 (2021). https://doi.org/10.1016/j.surfcoat.2021.127648

    Article  CAS  Google Scholar 

  34. A. Tekgül, M. Alper, H. Kockar, J. Mater. Sci. 27, 10059–10064 (2016). https://doi.org/10.1007/s10854-016-5078-0

    Article  CAS  Google Scholar 

  35. H. Wang, K. Zhang, M. Zhang, J. Alloys Compd. 781, 761–772 (2019). https://doi.org/10.1016/j.jallcom.2018.12.080

    Article  CAS  Google Scholar 

  36. H.R. Bang, J.S. Park, S.J. Kim, J. Electroanal. Chem. 944, 117653 (2023). https://doi.org/10.1016/j.jelechem.2023.117653

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Acknowledgement is made to Edit Springs ( https://www.editsprings.cn ) for providing professional language services.

Funding

The authors gratefully acknowledge the support of National Natural Science Foundation of China (21561027), Natural Science Foundation of Ningxia (2020AAC03266 & 2022AAC03298 & 2023AAC03340 & 2023AAC03326), Innovation and Entrepreneurship Project for Returnees of Ningxia ( Ning Renshe Letter [2024] No. 4), Science and Technology Innovation Leading Talent Project of Ningxia (KJT2016004), Ningxia New University Think Tank Project ([2018] 12), Liupanshan Resources Engineering and Technology Research Center (HGZD22-18 & HGZD23-09), Key Research Project of Ningxia Normal University (XJZDD2321), Key Discipline of Inorganic Chemistry ([2017] 83).

Author information

Authors and Affiliations

Authors

Contributions

Xinwei Li (First Author): Conceptualization, Methodology, Software, Investigation, Formal Analysis, Writing-Original Draft; Wenxia Zhao (Corresponding Author): Conceptualization, Funding Acquisition, Resources, Supervision, Writing-Review and Editing; Yi Cheng: Data Curation, Writing-Original Draft; Xin Liu: Visualization, Investigation; Kaihong Hui and Wei Zhao: Resources, Supervision; Yifan Song and Qian Zhu: Software, Validation; Huaijun Chen and Yubo Cui: Visualization, Editing.

Corresponding author

Correspondence to Wenxia Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2513.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhao, W., Cheng, Y. et al. Compound additives and stress study of EDTA-2Na chemical copper plating system in printed circuit boards. J Mater Sci: Mater Electron 35, 484 (2024). https://doi.org/10.1007/s10854-024-12283-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12283-3

Navigation