Skip to main content
Log in

Chemical vapour deposition synthesized novel LaFe2O3/Al2O3/Fe/CNT heterostructure for enhanced super-capacitive performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

LaFe2O3/Al2O3/Fe/CNT has been synthesized using chemical vapour deposition method and was investigated for its super-capacitive behavior. The electrochemical performance and super-capacitive study of the synthesized materials were performed in terms of cyclic voltammetry (CV) and galvanostatic charge discharge methods using three electrode system. As a result, we were able to enhance the cyclic voltametric potential range for the LaFe2O3/Al2O3/Fe/CNT, which shows that the electrode materials are more stable due to the greater current given by the CNT matrix. All of the CV curves have a rectangular shape, which shows that K+ ions from the electrolyte solution are what are adsorbing the charge. However, a pair of large redox peaks with a narrow current range were seen in the LaFe2O3/Al2O3/Fe/CNT, suggesting the presence of iron in the redox reaction. This was possible to see because the CNT matrix’s matrix quickly transferred electrons, which raised current. The primary charge storage is caused by K+ ion adsorption at the electrode/electrolyte contact. LaFe2O3/Al2O3/Fe/CNT was observed to be most efficient supercapacitor with the calculated specific capacitance and capacity retention of 600 F/g at 1 A/g and 106% for 5000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data will be made available from the corresponding author on reasonable request.

References

  1. Y. Xu, Z. Lin, X. Zhong, X. Huang, N.O. Weiss, Y. Huang, X. Duan, Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 2014 5, 1 (2014). https://doi.org/10.1038/ncomms5554

    Article  CAS  Google Scholar 

  2. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, in Nanoscience and Technology. ed. by P. Avouris (Macmillan Publishers Ltd, New York, 2009). https://doi.org/10.1142/9789814287005_0033

    Chapter  Google Scholar 

  3. H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Flexible graphene–polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 6, 1185–1191 (2013). https://doi.org/10.1039/C2EE24203F

    Article  CAS  Google Scholar 

  4. J. Yun, D. Kim, G. Lee, J.S. Ha, All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes. Carbon NY 79, 156–164 (2014). https://doi.org/10.1016/J.CARBON.2014.07.055

    Article  CAS  Google Scholar 

  5. J. Xu, K. Wang, S.Z. Zu, B.H. Han, Z. Wei, Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano. 4, 5019–5026 (2010).

    Article  CAS  Google Scholar 

  6. S. Chetana, V.N. Thakur, N. Kumar, N.C. Joshi, S. Upadhyay, K. Roy, K.G.B. Kumar, D. Rangappa, Electrochemical investigation of Silk G/MoS2/PDOT: PSS synthesized using supercritical fluid approach. J. Mater. Sci. Mater. Electron. (2023). https://doi.org/10.1007/s10854-023-11267-z

    Article  Google Scholar 

  7. J. Xie, P. Yang, Y. Wang, T. Qi, Y. Lei, C.M. Li, Puzzles and confusions in supercapacitor and battery: theory and solutions. J. Power Sources 401, 213–223 (2018). https://doi.org/10.1016/J.JPOWSOUR.2018.08.090

    Article  CAS  Google Scholar 

  8. D.V. Talapin, J.S. Lee, M.V. Kovalenko, E.V. Shevchenko, Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2009). https://doi.org/10.1021/CR900137K

    Article  Google Scholar 

  9. H.W. Hillhouse, M.C. Beard, Solar cells from colloidal nanocrystals: fundamentals, materials, devices, and economics. Curr. Opin. Colloid Interface Sci. 14, 245–259 (2009). https://doi.org/10.1016/J.COCIS.2009.05.002

    Article  CAS  Google Scholar 

  10. J.B. Sriramoju, M. Muniyappa, N.R. Marilingaiah, C. Sabbanahalli, M. Shetty, R. Mudike, C.C.P.P.D. Shivaramu, N.G.K.S. Rangappa, A.K. Ananda, D. Rangappa, Carbon-based TiO2-x heterostructure nanocomposites for enhanced photocatalytic degradation of dye molecules. Ceram. Int. 47, 10314–10321 (2021). https://doi.org/10.1016/J.CERAMINT.2020.12.014

    Article  CAS  Google Scholar 

  11. R. Mudike, C. Sabbanahalli, J.B. Sriramoju, A. Bheemaraju, G. Halligudra, M. Muniyappa, M.P. Narayanaswamy, A.K. CS, P.D. Shivaramu, D. Rangappa, Copper zinc tin sulfide and multi-walled carbon nanotubes nanocomposite for visible-light-driven photocatalytic applications. Mater. Res. Bull. 146, 111606 (2022). https://doi.org/10.1016/J.MATERRESBULL.2021.111606

    Article  CAS  Google Scholar 

  12. X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010). https://doi.org/10.1021/CR1001645

    Article  CAS  Google Scholar 

  13. R. Marschall, Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 24, 2421–2440 (2014). https://doi.org/10.1002/ADFM.201303214

    Article  CAS  Google Scholar 

  14. B. Han, W. Wei, L. Chang, P. Cheng, Y.H. Hu, Efficient visible light photocatalytic CO2 reforming of CH4. ACS Catal. 6, 494–497 (2016). https://doi.org/10.1021/ACSCATAL.5B02653/SUPPL_FILE/CS5B02653_SI_001.PDF

    Article  CAS  Google Scholar 

  15. B. Han, Y.H. Hu, Highly efficient temperature-Induced visible light photocatalytic hydrogen production from Water. J. Phys. Chem. C 119, 18927–18934 (2015). https://doi.org/10.1021/ACS.JPCC.5B04894/SUPPL_FILE/JP5B04894_SI_002.AVI

    Article  CAS  Google Scholar 

  16. Y. Shirasaki, G.J. Supran, M.G. Bawendi, V. Bulović, Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics (2013). https://doi.org/10.1038/nphoton.2012.328

    Article  Google Scholar 

  17. C. Liu, H. Liang, D. Wu, X. Lu, Q. Wang, Direct semiconductor laser writing of few-layer graphene polyhedra networks for flexible solid-state supercapacitor. Adv. Electron. Mater. 4, 1800092 (2018). https://doi.org/10.1002/AELM.201800092

    Article  Google Scholar 

  18. W. Zhang, D. Wang, W. Zheng, A semiconductor-electrochemistry model for design of high-rate Li ion battery. J. Energy Chem. 41, 100–106 (2020). https://doi.org/10.1016/J.JECHEM.2019.04.018

    Article  Google Scholar 

  19. M. Shastri, M. Shetty, N. Rani, M.M. Muniyappa, M.S. Sree, V. Gangaraju, C. Sabanhalli, S.V. Lokesh, P.D. Shivaramu, D. Rangappa, Reduced graphene oxide wrapped sulfur nanocomposite as cathode material for lithium sulfur Battery. Ceram. Int. 47, 14790–14797 (2021). https://doi.org/10.1016/J.CERAMINT.2020.10.215

    Article  CAS  Google Scholar 

  20. M. Shetty, C. Schüßler, M. Shastri, C. Sabbanahalli, C.P. Chitrabhanu, M. Murthy, S. Jagadeesh Babu, T. Tomai, K.S. Anantharaju, P.D. Shivaramu, D. Rangappa, One-pot supercritical water synthesis of Bi2MoO6-RGO 2D heterostructure as anodes for Li-ion batteries. Ceram. Int. 47, 10274–10283 (2021). https://doi.org/10.1016/J.CERAMINT.2020.12.061

    Article  CAS  Google Scholar 

  21. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature (1972). https://doi.org/10.1038/238037a0

    Article  Google Scholar 

  22. I. Cesar, K. Sivula, A. Kay, R. Zboril, M. Grätzel, Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 113, 772–782 (2008). https://doi.org/10.1021/JP809060P

    Article  Google Scholar 

  23. A.M. Hussein, L. Mahoney, R. Peng, H. Kibombo, C.M. Wu, R.T. Koodali, R. Shende, Mesoporous coupled ZnO/TiO2 photocatalyst nanocomposites for hydrogen generation. J. Renew. Sustain. Energy 5, 033118 (2013). https://doi.org/10.1063/1.4808263

    Article  CAS  Google Scholar 

  24. Y.H. Hu, Efficient photocatalyst—hydrogenated black TiO2 for the photocatalytic splitting of water. Angew. Chem. Int. Ed. 51, 12410–12412 (2012). https://doi.org/10.1002/ANIE.201206375

    Article  CAS  Google Scholar 

  25. K. Zhang, L. Wang, J.K. Kim, M. Ma, G. Veerappan, C.L. Lee, K.J. Kong, H. Lee, J.H. Park, An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation. Energy Environ. Sci. 9, 499–503 (2016). https://doi.org/10.1039/C5EE03100A

    Article  CAS  Google Scholar 

  26. N. Bao, L. Shen, T. Takata, K. Domen, Self-templated synthesis of Nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem. Mater. 20, 110–117 (2007). https://doi.org/10.1021/CM7029344

    Article  Google Scholar 

  27. K. Zhang, L. Guo, Metal sulphide semiconductors for photocatalytic hydrogen production. Catal. Sci. Technol. 3, 1672–1690 (2013). https://doi.org/10.1039/C3CY00018D

    Article  CAS  Google Scholar 

  28. M. Tabata, K. Maeda, T. Ishihara, T. Minegishi, T. Takata, K. Domen, Photocatalytic hydrogen evolution from water using copper gallium sulfide under visible-light irradiation. J. Phys. Chem. C 114, 11215–11220 (2010). https://doi.org/10.1021/JP103158F

    Article  CAS  Google Scholar 

  29. C.S.S. Upadhyay, N.C. Joshi, N. Kumar, P. Choudhary, N. Sharma, V.N. Thakur, A facile supercritical fluid synthesis of cobalt sulfide integrated with MXene and PANI/PEDOT nanocomposites as electrode material for supercapacitor applications. FlatChem 37, 100456 (2023). https://doi.org/10.1016/j.flatc.2022.100456

    Article  CAS  Google Scholar 

  30. Y. Zhang, X. Xu, Machine learning band gaps of doped-TiO 2 photocatalysts from structural and morphological parameters. ACS Omega 5, 15344–15352 (2020). https://doi.org/10.1021/acsomega.0c01438

    Article  CAS  Google Scholar 

  31. Y. Zhang, X. Xu, Machine learning optical band gaps of doped-ZnO films. Optik (Stuttg). 217, 164808 (2020). https://doi.org/10.1016/j.ijleo.2020.164808

    Article  CAS  Google Scholar 

  32. N. Kumar, V.N. Thakur, M. Karthikeyan, V. Gajraj, A. Sen, N.C. Joshi, N. Priyadarshi, Morphological reduction of Fe3O4 by a single-step hydrothermal synthesis using 1D MnO2 as a template and its supercapacitive behaviour. CrystEngComm 24, 4611–4621 (2022). https://doi.org/10.1039/D2CE00620K

    Article  CAS  Google Scholar 

  33. K. Subramani, N. Sudhan, M. Karnan, M. Sathish, Orange peel derived activated carbon for fabrication of high-energy and high-rate supercapacitors. ChemistrySelect 2, 11384–11392 (2017). https://doi.org/10.1002/SLCT.201701857

    Article  CAS  Google Scholar 

  34. M. Karnan, K. Subramani, N. Sudhan, N. Ilayaraja, M. Sathish, Aloe vera derived activated high-surface-area carbon for flexible and high-energy supercapacitors. ACS Appl. Mater. Interfaces 8, 35191–35202 (2016). https://doi.org/10.1021/ACSAMI.6B10704/SUPPL_FILE/AM6B10704_SI_002.AVI

    Article  CAS  Google Scholar 

  35. L.Y. Chen, Y. Hou, J.L. Kang, A. Hirata, T. Fujita, M.W. Chen, Toward the theoretical capacitance of RuO2 reinforced by highly conductive nanoporous gold. Adv. Energy Mater. 3, 851–856 (2013). https://doi.org/10.1002/AENM.201300024

    Article  CAS  Google Scholar 

  36. X. Li, A. Gao, D. Shu, K. Yang, X. Zhou, Z. Zhu, F. Yi, R. Zeng, Holey graphene/MnO2 nanosheets with open ion channels for high-performance solid-state asymmetric supercapacitors. Int. J. Energy Res. 44, 3446–3457 (2020). https://doi.org/10.1002/ER.4976

    Article  CAS  Google Scholar 

  37. W. Wang, L. Lu, Y. Xie, X. Mei, Y. Tang, W. Wu, R. Liang, Tailoring the surface morphology and nanoparticle distribution of laser-induced graphene/Co3O4 for high-performance flexible microsupercapacitors. Appl. Surf. Sci. 504, 144487 (2020). https://doi.org/10.1016/J.APSUSC.2019.144487

    Article  CAS  Google Scholar 

  38. S.M. Lee, Y.J. Park, D. Van Lam, J.H. Kim, K. Lee, Effects of annealing on electrochemical performance in graphene/V2O5 supercapacitor. Appl. Surf. Sci. 512, 145626 (2020). https://doi.org/10.1016/J.APSUSC.2020.145626

    Article  CAS  Google Scholar 

  39. Y.O. Ibrahim, M.A. Gondal, A. Alaswad, R.A. Moqbel, M. Hassan, E. Cevik, T.F. Qahtan, M.A. Dastageer, A. Bozkurt, Laser-induced anchoring of WO3 nanoparticles on reduced graphene oxide sheets for photocatalytic water decontamination and energy storage. Ceram. Int. 46, 444–451 (2020). https://doi.org/10.1016/J.CERAMINT.2019.08.281

    Article  CAS  Google Scholar 

  40. S. Sundriyal, V. Shrivastav, M. Sharma, S. Mishra, A. Deep, Significantly enhanced performance of rGO/TiO2 nanosheet composite electrodes based 1.8 V symmetrical supercapacitor with use of redox additive electrolyte. J. Alloys Compd. 790, 377–387 (2019). https://doi.org/10.1016/J.JALLCOM.2019.03.150

    Article  CAS  Google Scholar 

  41. T. Takahashi, Y. Minamino, H. Hirasawa, T. Ouchi, Oxidation and its kinetics study of Ti–Al and Ti–V alloys in air. Mater. Trans. 55, 290–297 (2014). https://doi.org/10.2320/MATERTRANS.L-M2013840

    Article  CAS  Google Scholar 

  42. G.M.K. Tolba, M. Motlak, A.M. Bastaweesy, E.A. Ashour, W. Abdelmoez, M. El-Newehy, N.A.M. Barakat, Synthesis of novel Fe-doped amorphous TiO2/C nanofibers for supercapacitors applications. Int. J. Electrochem. Sci. 10, 3117–3123 (2015)

    Article  CAS  Google Scholar 

  43. W. Tian, X. Wang, C. Zhi, T. Zhai, D. Liu, C. Zhang, D. Golberg, Y. Bando, Ni(OH)2 nanosheet @Fe2O3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes. Nano Energy 2, 754–763 (2013). https://doi.org/10.1016/J.NANOEN.2013.01.004

    Article  CAS  Google Scholar 

  44. Y. Sun, P. Guan, Y. Liu, H. Xu, S. Li, D. Chu, Recent progress in lithium lanthanum titanate electrolyte towards all solid-state lithium ion secondary battery. Crit. Rev. Solid State Mater. Sci. 44, 265–282 (2019). https://doi.org/10.1080/10408436.2018.1485551

    Article  CAS  Google Scholar 

  45. M. Ismael, M. Wark, Perovskite-type LaFeO3: photoelectrochemical properties and photocatalytic degradation of organic pollutants under visible light irradiation. Catalysts 9, 342 (2019). https://doi.org/10.3390/catal9040342

    Article  CAS  Google Scholar 

  46. Y. El Mendili, J.F. Bardeau, N. Randrianantoandro, J.M. Greneche, F. Grasset, Structural behavior of laser-irradiated γ-Fe2O3 nanocrystals dispersed in porous silica matrix: γ-Fe2O3 to α-Fe2O3 phase transition and formation of ε-Fe2O3. Sci. Technol. Adv. Mater. 17, 597–609 (2016). https://doi.org/10.1080/14686996.2016.1222494/SUPPL_FILE/TSTA_A_1222494_SM4619.PDF

    Article  CAS  Google Scholar 

  47. R.K. Singhal, B. Gangadhar, H. Basu, V. Manisha, G.R.K. Naidu, A.V.R. Reddy, Remediation of malathion contaminated soil using zero valent iron nano-particles. Am. J. Anal. Chem. 03, 76–82 (2012). https://doi.org/10.4236/ajac.2012.31011

    Article  CAS  Google Scholar 

  48. A.A. Mohammed, Z.T. Khodair, A.A. Khadom, Preparation and investigation of the structural properties of α-Al2O3 nanoparticles using the sol–gel method. Chem. Data Collections 29, 100531 (2020). https://doi.org/10.1016/j.cdc.2020.100531

    Article  CAS  Google Scholar 

  49. N. Gamze Karsli, S. Yesil, A. Aytac, Effect of hybrid carbon nanotube/short glass fiber reinforcement on the properties of polypropylene composites. Compos. B Eng. 63, 154–160 (2014). https://doi.org/10.1016/j.compositesb.2014.04.006

    Article  CAS  Google Scholar 

  50. R.-C. Fang, Q.-Q. Sun, P. Zhou, W. Yang, P.-F. Wang, D.W. Zhang, High-performance bilayer flexible resistive random access memory based on low-temperature thermal atomic layer deposition. Nanoscale Res. Lett. (2013). https://doi.org/10.1186/1556-276x-8-92

    Article  Google Scholar 

  51. T. TAGO, N. Kataoka, H. Tanaka, K. Kinoshita, S. Kishida, XPS study from a clean surface of Al2O3 single crystals. Procedia Eng. (2017). https://doi.org/10.1016/j.proeng.2018.02.081

    Article  Google Scholar 

  52. I. Iatsunskyi, M. Kempiński, M. Jancelewicz, K. Załęski, S. Jurga, V. Smyntyna, Structural and XPS characterization of ALD Al2O3 coated porous silicon. Vacuum (2015). https://doi.org/10.1016/j.vacuum.2014.12.015

    Article  Google Scholar 

  53. B.J. Kim, J.P. Kim, J.S. Park, Effects of Al interlayer coating and thermal treatment on electron emission characteristics of carbon nanotubes deposited by electrophoretic method. Nanoscale Res. Lett. (2014). https://doi.org/10.1186/1556-276X-9-236

    Article  Google Scholar 

  54. N. Kumar, J.R. Rodriguez, V.G. Pol, A. Sen, Facile synthesis of 2D graphene oxide sheet enveloping ultrafine 1D LiMn2O4 as interconnected framework to enhance cathodic property for Li-ion battery. Appl. Surf. Sci. 463, 132–140 (2019). https://doi.org/10.1016/j.apsusc.2018.08.210

    Article  CAS  Google Scholar 

  55. N. Kumar, J.R. Rodriguez, V.G. Pol, A. Sen, Synergistically advancing Li storage property of hydrothermally grown 1D pristine MnO2 over a mesh-like interconnected framework of 2D graphene oxide. J. Solid State Electrochem. 23, 1443–1454 (2019). https://doi.org/10.1007/S10008-019-04221-9/TABLES/1

    Article  CAS  Google Scholar 

  56. T. Vijayaraghavan, R. Sivasubramanian, S. Hussain, A. Ashok, A facile synthesis of LaFeO3-based perovskites and their application towards sensing of neurotransmitters. ChemistrySelect (2017). https://doi.org/10.1002/slct.201700723

    Article  Google Scholar 

  57. N. Sharma, H.S. Kushwaha, S.K. Sharma, K. Sachdev, Fabrication of LaFeO3 and rGO-LaFeO3 microspheres based gas sensors for detection of NO2 and CO. RSC Adv. (2020). https://doi.org/10.1039/c9ra09460a

    Article  Google Scholar 

  58. M. Najafi, S. Bellani, V. Galli, M.I. Zappia, A. Bagheri, M. Safarpour, H. Beydaghi, M. Eredia, L. Pasquale, R. Carzino, S. Lauciello, J.-K. Panda, R. Brescia, L. Gabatel, V. Pellegrini, F. Bonaccorso, Carbon-α-Fe2O3 composite active material for high-capacity electrodes with high mass loading and flat current collector for quasi-symmetric supercapacitors. Electrochem 3, 463–478 (2022). https://doi.org/10.3390/electrochem3030032

    Article  CAS  Google Scholar 

  59. A. Tornheim, D.C. O’Hanlon, What do coulombic efficiency and capacity retention truly measure? a deep dive into cyclable lithium inventory, limitation type, and redox side reactions. J. Electrochem. Soc. 167, 110520 (2020). https://doi.org/10.1149/1945-7111/ab9ee8

    Article  CAS  Google Scholar 

  60. G. Wu, P. Tan, D. Wang, Z. Li, L. Peng, Y. Hu, C. Wang, W. Zhu, S. Chen, W. Chen, High-performance supercapacitors based on electrochemical-induced vertical-aligned carbon nanotubes and polyaniline nanocomposite electrodes. Sci. Rep. 20177, 1 (2017). https://doi.org/10.1038/srep43676

    Article  Google Scholar 

  61. P.M. Padwal, S.L. Kadam, S.M. Mane, S.B. Kulkarni, Enhanced specific capacitance and supercapacitive properties of polyaniline–iron oxide (PANI–Fe2O3) composite electrode material. J. Mater. Sci. 51, 10499–10505 (2016). https://doi.org/10.1007/s10853-016-0270-4

    Article  CAS  Google Scholar 

  62. S. Shivakumara, T.R. Penki, N. Munichandraiah, Synthesis and characterization of porous flowerlike-Fe2O3 nanostructures for supercapacitor application. ECS Electrochem. Lett. 2, A60–A62 (2013). https://doi.org/10.1149/2.002307eel

    Article  CAS  Google Scholar 

  63. V. Sharavath, S. Sarkar, S. Ghosh, One-pot hydrothermal synthesis of TiO2/graphene nanocomposite with simultaneous nitrogen-doping for energy storage application. J. Electroanal. Chem. 829, 208–216 (2018). https://doi.org/10.1016/j.jelechem.2018.09.056

    Article  CAS  Google Scholar 

  64. L. Ma, L.M. Xu, X.P. Zhou, X.Y. Xu, Biopolymer-assisted hydrothermal synthesis of flower-like MoS2 microspheres and their supercapacitive properties. Mater. Lett. 132, 291–294 (2014). https://doi.org/10.1016/J.MATLET.2014.06.108

    Article  CAS  Google Scholar 

  65. Q. Tang, H. Shen, H. Yao, W. Wang, Y. Jiang, C. Zheng, Synthesis of CZTS/RGO composite material as supercapacitor electrode. Ceram. Int. 42, 10452–10458 (2016). https://doi.org/10.1016/J.CERAMINT.2016.03.194

    Article  CAS  Google Scholar 

  66. A.C. Lokhande, A. Patil, A. Shelke, P.T. Babar, M.G. Gang, V.C. Lokhande, D.S. Dhawale, C.D. Lokhande, J.H. Kim, Binder-free novel Cu4SnS4 electrode for high-performance supercapacitors. Electrochim. Acta 284, 80–88 (2018). https://doi.org/10.1016/J.ELECTACTA.2018.07.170

    Article  CAS  Google Scholar 

Download references

Funding

Authors wants to appreciate Uttaranchal University for providing funding under seed money project scheme. Authors are also thankful to National Physical Laboratory (NPL), New Delhi and Materials Research Centre (MRC), Malaviya National Institute of Technology (MNIT), Jaipur for providing the compositional characterizations.

Author information

Authors and Affiliations

Authors

Contributions

VNT: Conceptualization, Methodology, Data curation, Writing—original draft, Visualization. CS: Conceptualization, Methodology, Data curation, Formal analysis. VG: Formal analysis, Writing—review & editing. NK: Data analysis and reviewing. NCJ: Data analysis and reviewing. KGB: Conceptualization, Methodology, Investigation, Resources, Writing—review & editing.

Corresponding author

Correspondence to S. Chetana.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, V.N., Chetana, S., Gajraj, V. et al. Chemical vapour deposition synthesized novel LaFe2O3/Al2O3/Fe/CNT heterostructure for enhanced super-capacitive performance. J Mater Sci: Mater Electron 34, 2314 (2023). https://doi.org/10.1007/s10854-023-11723-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11723-w

Navigation