Skip to main content
Log in

Structure construction and wave-absorbing properties of mesoporous hollow carbon microspheres

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, SiO2 hard template method and phenolic resin carbonization were synthesized to prepare porous hollow carbon microspheres. Porous hollow carbon microspheres with different mesoporous shells and internal cavities were obtained by adjusting the slow addition time of resorcinol-formaldehyde and stirring rate. The samples were characterized by SEM, TEM, nitrogen adsorption and desorption tests, and network vector analyzer. When the slow addition time is 90 min, the stirring rate is 950r/min, and the loading amount is only 6.25%, the optimal performance was observed. The minimum reflection loss rate (RLmin) is − 27.4dB and the maximum effective absorption bandwidth (EABmax) is 6.5 GHz. The reason why the absorbing material has good electromagnetic wave absorption performance is that the material contains internal cavity and mesoporous shell. The interface polarization not only improves the loss capacity, but also the porous structure is more conducive to the impedance matching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. H. Xu, X. Yin, X. Fan, Z. Tang, Z. Hou, M. Li, X. Li, L. Zhang, L. Cheng, Constructing a tunable heterogeneous interface in bimetallic metal–organic frameworks derived porous carbon for excellent microwave absorption performance. Carbon 148, 421–429 (2019). https://doi.org/10.1016/j.carbon.2019.03.091

    Article  CAS  Google Scholar 

  2. H. Xu, X. Yin, M. Li, F. Ye, M. Han, Z. Hou, X. Li, L. Zhang, L. Cheng, Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon 132, 343–351 (2018). https://doi.org/10.1016/j.carbon.2018.02.040

    Article  CAS  Google Scholar 

  3. Y. Cheng, J. Cao, Y. Li, Z. Li, H. Zhao, G. Ji, Y. Du, The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core–shell hybrids toward microwave absorption. ACS Sustain. Chem. Eng. 6(1), 1427–1435 (2017). https://doi.org/10.1021/acssuschemeng.7b03846

    Article  CAS  Google Scholar 

  4. M. Kolahdouz, B. Xu, A.F. Nasiri, M. Fathollahzadeh, M. Manian, H. Aghababa, Y. Wu, H.H. Radamson, Carbon-related materials: graphene and carbon nanotubes in semiconductor applications and design. Micromachines (2022). https://doi.org/10.3390/mi13081257

    Article  Google Scholar 

  5. L. Kong, X. Yin, M. Han, X. Yuan, Z. Hou, F. Ye, L. Zhang, L. Cheng, Z. Xu, J. Huang, Macroscopic bioinspired graphene sponge modified with in situ grown carbon nanowires and its electromagnetic properties. Carbon 9(111), 94–102 (2017). https://doi.org/10.1016/j.carbon.2016.09.066

    Article  CAS  Google Scholar 

  6. H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, H. Peng, Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption Intensities. Adv. Mater. 26(48), 8120–8125 (2014). https://doi.org/10.1002/adma.201403735

    Article  CAS  Google Scholar 

  7. L. Kong, C. Wang, X. Yin, X. Fan, W. Wang, J. Huang, Electromagnetic wave absorption properties of a carbon nanotube modified by a tetrapyridinoporphyrazine interface layer. J. Mater. Chem. C 5(30), 7479–7488 (2017). https://doi.org/10.1039/c7tc02701j

    Article  CAS  Google Scholar 

  8. Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, Y. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788

    Article  CAS  Google Scholar 

  9. X. Xu, G. Wang, G. Wan, S. Shi, C. Hao, Y. Tang, G. Wang, Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.122980

    Article  Google Scholar 

  10. D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu, W. Chu, X. Han, Y. Du, Rational design of core–shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017). https://doi.org/10.1016/j.carbon.2016.10.059

    Article  CAS  Google Scholar 

  11. C. Zhou, S. Geng, X. Xu, T. Wang, L. Zhang, X. Tian, F. Yang, H. Yang, Y. Li, Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon 108, 234–241 (2016). https://doi.org/10.1016/j.carbon.2016.07.015

    Article  CAS  Google Scholar 

  12. H. Xu, X. Yin, M. Zhu, M. Han, Z. Hou, X. Li, L. Zhang, L. Cheng, Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9(7), 6332–6341 (2017). https://doi.org/10.1021/acsami.6b15826

    Article  CAS  Google Scholar 

  13. G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu, L. Yang, H. Li, P. Guo, H. Lv, Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018). https://doi.org/10.1016/j.cej.2017.09.174

    Article  CAS  Google Scholar 

  14. H. Wu, L. Wang, S. Guo, Z. Shen, Double-layer structural design of dielectric ordered mesoporous carbon/paraffin composites for microwave absorption. Appl. Phys. A 108(2), 439–446 (2012). https://doi.org/10.1007/s00339-012-6906-6

    Article  CAS  Google Scholar 

  15. H. Zhao, Y. Cheng, Z. Zhang, B. Zhang, C. Pei, F. Fan, G. Ji, Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon 173, 501–511 (2021). https://doi.org/10.1016/j.carbon.2020.11.035

    Article  CAS  Google Scholar 

  16. H. Zhao, Y. Cheng, H. Lv, G. Ji, Y. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 142, 245–253 (2019). https://doi.org/10.1016/j.carbon.2018.10.027

    Article  CAS  Google Scholar 

  17. B. Zhao, X. Guo, W. Zhao, J. Deng, B. Fan, G. Shao, Z. Bai, R. Zhang, Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res. 10(1), 331–343 (2016). https://doi.org/10.1007/s12274-016-1295-3

    Article  CAS  Google Scholar 

  18. H. Lv, G. Ji, X. Liang, H. Zhang, Y. Du, A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties. J. Mater. Chem. C 3(19), 5056–5064 (2015). https://doi.org/10.1039/c5tc00525f

    Article  CAS  Google Scholar 

  19. Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, CoNi@SiO2@TiO2and CoNi@Air@TiO2Microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149

    Article  CAS  Google Scholar 

  20. M.A. Ahsan, O. Fernandez-Delgado, E. Deemer, H. Wang, A.A. El-Gendy, M.L. Curry, J.C. Noveron, Carbonization of Co-BDC MOF results in magnetic C@Co nanoparticles that catalyze the reduction of methyl orange and 4-nitrophenol in water. J. Mol. Liq. (2019). https://doi.org/10.1016/j.molliq.2019.111059

    Article  Google Scholar 

  21. R. Qiang, Y. Du, Y. Wang, N. Wang, C. Tian, J. Ma, P. Xu, X. Han, Rational design of yolk–shell C@C microspheres for the effective enhancement in microwave absorption. Carbon 98, 599–606 (2016). https://doi.org/10.1016/j.carbon.2015.11.054

    Article  CAS  Google Scholar 

  22. H. Lv, Y. Guo, Y. Zhao, H. Zhang, B. Zhang, G. Ji, J. Xu, Achieving tunable electromagnetic absorber via graphene/carbon sphere composites. Carbon 110, 130–137 (2016). https://doi.org/10.1016/j.carbon.2016.09.009

    Article  CAS  Google Scholar 

  23. C. Zhang, Y. Peng, Y. Song, J. Li, F. Yin, Y. Yuan, Periodic three-Dimensional Nitrogen-Doped Mesoporous Carbon Spheres Embedded with Co/Co3O4 nanoparticles toward microwave Absorption. ACS Appl. Mater. Interfaces 12(21), 24102–24111 (2020). https://doi.org/10.1021/acsami.0c03105

    Article  CAS  Google Scholar 

  24. L. Huang, J. Li, Z. Wang, Y. Li, X. He, Y. Yuan, Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. Carbon 143, 507–516 (2019). https://doi.org/10.1016/j.carbon.2018.11.042

    Article  CAS  Google Scholar 

  25. X. Zhou, C. Zhang, M. Zhang, A. Feng, S. Qu, Y. Zhang, X. Liu, Z. Jia, G. Wu, Synthesis of Fe3O4/carbon foams composites with broadened bandwidth and excellent electromagnetic wave absorption performance. Compos. Part A Appl. Sci. Manufac. (2019). https://doi.org/10.1016/j.compositesa.2019.105627

    Article  Google Scholar 

  26. Y. Shi. Development status and prospect of aviation materials in China. IOP Conference Series: Earth and Environmental Science, 632(5) (2021).https://doi.org/10.1088/1755-1315/632/5/052038

  27. Z. Xiang, Y. Wang, X. Yin, Q. He, Microwave absorption performance of porous heterogeneous SiC/SiO2 microspheres. Chem. Eng. J. (2023). https://doi.org/10.1016/j.cej.2022.138742

    Article  Google Scholar 

  28. S. Gao, Q. An, Z. Xiao, S. Zhai, Z. Shi, Significant promotion of porous architecture and magnetic Fe3O4 NPs inside honeycomb-like carbonaceous composites for enhanced microwave absorption. RSC Adv. 8(34), 19011–19023 (2018). https://doi.org/10.1039/c8ra00913a

    Article  CAS  Google Scholar 

  29. W. Yang, J. Sun, D. Liu, W. Fu, Y. Dong, Y. Fu, Y. Zhu, Rational design of hierarchical structure of carbon@polyaniline composite with enhanced microwave absorption properties. Carbon 194, 114–126 (2022). https://doi.org/10.1016/j.carbon.2022.03.061

    Article  CAS  Google Scholar 

  30. S. Xie, Z. Ji, L. Zhu, J. Zhang, Y. Cao, J. Chen, R. Liu, J. Wang, Recent progress in electromagnetic wave absorption building materials. J. Building Eng. (2020). https://doi.org/10.1016/j.jobe.2019.100963

    Article  Google Scholar 

  31. J. Cheng, H. Zhang, Y. Xiong, L. Gao, B. Wen, H. Raza, H. Wang, G. Zheng, D. Zhang, H. Zhang, Construction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: a review. J. Materiomics 7(6), 1233–1263 (2021). https://doi.org/10.1016/j.jmat.2021.02.017

    Article  Google Scholar 

  32. Y. Cheng, H. Zhao, Y. Zhao, J. Cao, J. Zheng, G. Ji, Structure-switchable mesoporous carbon hollow sphere framework toward sensitive microwave response. Carbon 161, 870–879 (2020). https://doi.org/10.1016/j.carbon.2020.02.011

    Article  CAS  Google Scholar 

  33. J. Xu, Z. Liu, J. Wang, P. Liu, M. Ahmad, Q. Zhang, B. Zhang, Preparation of core–shell C@TiO2 composite microspheres with wrinkled morphology and its microwave absorption. J. Colloid Interface Sci. 607(Pt 2), 1036–1049 (2022). https://doi.org/10.1016/j.jcis.2021.09.038

    Article  CAS  Google Scholar 

  34. Q. Li, J. Zhu, S. Wang, F. Huang, Q. Liu, X. Kong, Microwave absorption on a bare biomass derived holey silica-hybridized carbon absorbent. Carbon 161, 639–646 (2020). https://doi.org/10.1016/j.carbon.2020.01.087

    Article  CAS  Google Scholar 

  35. P. Liu, S. Gao, Y. Wang, Y. Huang, Y. Wang, J. Luo, Core–Shell CoNi@Graphitic carbon decorated on B,N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation. ACS Appl. Mater. Interfaces 11(28), 25624–25635 (2019). https://doi.org/10.1021/acsami.9b08525

    Article  CAS  Google Scholar 

  36. B. Li, B. Mao, T. He, H. Huang, X. Wang, Preparation and microwave absorption properties of double-layer hollow reticulated SiC foam. ACS Appl. Electron. Mater. 1(10), 2140–2149 (2019). https://doi.org/10.1021/acsaelm.9b00510

    Article  CAS  Google Scholar 

  37. W. Gu, X. Cui, J. Zheng, J. Yu, Y. Zhao, G. Ji, Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation. J. Mater. Sci. Technol. 67, 265–272 (2021). https://doi.org/10.1016/j.jmst.2020.06.054

    Article  CAS  Google Scholar 

  38. C. Grosse, A program for the fitting of Debye, Cole–Cole, Cole–Davidson, and Havriliak–Negami dispersions to dielectric data. J. Colloid Interface Sci. 419, 102–106 (2014). https://doi.org/10.1016/j.jcis.2013.12.031

    Article  CAS  Google Scholar 

  39. X. Wang, T. Zhu, S. Chang, Y. Lu, W. Mi, W. Wang, 3D nest-like architecture of core–shell CoFe2O4@1T/2H-MoS2 composites with tunable microwave absorption performance. ACS Appl. Mater. Interfaces 12(9), 11252–11264 (2020). https://doi.org/10.1021/acsami.9b23489

    Article  CAS  Google Scholar 

  40. Y. Huo, K. Zhao, P. Miao, J. Kong, Z. Xu, K. Wang, F. Li, Y. Tang, Microwave absorption performance of SiC/ZrC/SiZrOC hybrid nanofibers with enhanced high-temperature oxidation Resistance. ACS Sustain. Chem. Eng. 8(28), 10490–10501 (2020). https://doi.org/10.1021/acssuschemeng.0c02789

    Article  CAS  Google Scholar 

  41. F. Wu, P. Liu, J. Wang, T. Shah, M. Ahmad, Q. Zhang, B. Zhang, Fabrication of magnetic tubular fiber with multi-layer heterostructure and its microwave absorbing properties. J. Colloid Interface Sci. 577, 242–255 (2020). https://doi.org/10.1016/j.jcis.2020.05.058

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Basic Research Expenses Project for Provincial Colleges and Universities (JYG2021001) and Tangshan Science and Technology Planning Project (21130203 C).

Author information

Authors and Affiliations

Authors

Contributions

XY and YZ contributed toward conceptualization, data curation, and writing—original draft preparation. YC contributed toward visualization, investigation, validation, and writing—reviewing and editing. ZZ contributed toward formal analysis, and reviewing and editing. SZ contributed toward methodology, writing—reviewing and editing, and testing.

Corresponding author

Correspondence to Yang Chen.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Zhang, Y., Zhang, Z. et al. Structure construction and wave-absorbing properties of mesoporous hollow carbon microspheres. J Mater Sci: Mater Electron 34, 2039 (2023). https://doi.org/10.1007/s10854-023-11501-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11501-8

Navigation